Stereochemical Control (E / Z and syn/anti) by the Diphenylphosphinoyl Group in the Synthesis of Allylic Alcohols by Allylic Rearrangement and by 1,4Diastereoselective Reduction of Enones

Jonathan Clayden, ${ }^{a}$ Eric W. Collington, ${ }^{b}$ Jason Elliott, ${ }^{\text {a }}$ Stephen J. Martin, ${ }^{\text {a }}$
Andrew B. McElroy, ${ }^{a}$ Stuart Warren ${ }^{*, a}$ and David Waterson ${ }^{a}$
${ }^{a}$ University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
${ }^{\text {b }}$ Glaxo Group Research, Greenford Road, Greenford, Middlesex UB6 OHE, UK

Allylic rearrangement of substitued 2-hydroxyalk-3-en-1-yl(diphenyl)phosphine oxides to 4-hydro-xyalk-2-en-1-yl(diphenyl)phosphine oxides can be performed with total regio- and reasonable stereochemical control. Alternatively, the reduction of substituted 4-diphenylphosphinoylbut-2-en-1-ones shows remarkable 1,4-diastereoselectivity. All these reactions are directed by the diphenylphosphinoyl ($\mathrm{Ph}_{2} \mathrm{PO}$) group.

Rearrangements of allylic alcohols are widely used in synthesis, ${ }^{1}$ and we have described ${ }^{2}$ the use of phosphine oxides derived by such rearrangements in the synthesis of alkadienols by the Horner-Wittig reaction. This paper ${ }^{3}$ describes aspects of stereochemical control in the rearrangement of single diastereoisomers of allylic alcohols. The simplest rearrangement, ${ }^{2}$ of the adduct 2 from methyldiphenylphosphine oxide 1, butyllithium and butenone, gives a mixture of E and Z isomers of the transposed allylic alcohol 3 in excellent yield under Babler's conditions of acid-catalysed acetylation. ${ }^{4}$ When adducts of longer chain alkyldiphenylphosphine oxides and enals or enones, e.g. 5, are rearranged, only the E isomer is formed, but the question of diastereoselectivity arises. We report on the stereospecificity of the reaction, i.e. that single diastereoisomers of 6 can be made from single diastereoisomers of 5 , and on its inherent stereoselctivity, i.e. that intermediates such as allyl cations can show a 1,4 -diastereoselectivity. All the rearrangements reported in this paper are driven by the diphenylphosphinoyl $\left(\mathrm{Ph}_{2} \mathrm{PO}\right)$ group, which is always attached to one of the chiral centres, and all are totally E selective for the reasons we have already discussed. ${ }^{2}$

Addition of hexyldiphenylphosphine oxide 4 to butenone gave a $60: 40$ mixture of diastereoisomers 5 with anti-5 predominating. Rearrangement of the mixture in aqueous acid ${ }^{5}$ gave a 67:33 mixture of anti:syn alcohols 6 with some elimination products. Loss of product by elimination can be much more serious: attempted rearrangement of either 7 or 9 , adducts of 1 and the appropriate enone, gave only the E, E dienes 8 and 10. These compounds behaved like tertiary nonallylic alcohols. ${ }^{6}$

Rearrangement of each diastereoisomer of 5 under acidcatalysed acetylation conditions ${ }^{4}$ gave a mixture of anti and syn acetates 11 again favouring the anti compound. There is a small match/mismatch effect: the anti alcohol 5 gives rather more of the rearranged anti acetate 11 than does the syn alcohol 5 . The 67:33 mixture of alcohols 5 from the preparation gave the expected weighted mean ($63: 37$). Neither these acetates, nor the alcohols derived from them by hydrolysis, could be separated but enough pure anti-11 was separated by HPLC for characterisation. The stereochemistry was confirmed by an X-ray crystal structure analysis ${ }^{7}$ of the epoxide ${ }^{8}$ made from anti-11.

Both the acid-catalysed rearrangement and the rearrangement under conditions of acid-catalysed acetylation have the allyl cation 12 as an intermediate. A possible explanation for the rather weak stereoselectivities in these rearrangements and the small match/mismatch effect is that this cation prefers the E, E
conformation 12 and that the molecule of water or acetic acid prefers to add from the face of the cation opposite to the large $\mathrm{Ph}_{2} \mathrm{PO}$ group.

The crotonaldehyde adducts 13 of 4 were easily separated by fractional crystallisation on a 20 g scale in yields of 57% (anti13) and 29% (syn-13) so that it was possible to study their rearrangements under a variety of conditions. This is a more interesting case as the double bonds in 13 and 14 have the same number of substituents. ${ }^{2}$ Acid-catalysed acetylation showed a more marked stereospecificity: each isomer of 13 gave predominantly rearranged acetate 14 of the same configuration in a 65:35 ratio. Presumably, the molecule of acetic acid already present as the leaving group migrates suprafacially across an allylic cation of the same configuration as 12 . The rearranged acetates could not be separated, but hydrolysis gave a mixture of rearranged alcohols which could be partly separated by chromatography and crystallisation. Nevertheless, a method of stereospecific rearrangement is clearly preferable.

The two reactions used so far are not stereospecific because the allyl cation intermediates are only weakly solvated by neutral species (water or acetic acid) in the presence of more molecules of the same nucleophiles. Solvation by an anionic nucleophile would be tighter and studies by Goering ${ }^{9}$ revealed that rearrangement of allylic p-nitrobenzoates in non-nucleophilic polar solvents offered the best hope. We prepared the p nitrobenzoates syn and anti-15 of each of the allylic alcohols 13 and rearranged them in benzonitrile at $190^{\circ} \mathrm{C}$. Each ester gave a totally rearranged ester 16 (Scheme 1) with some elimination product 18. (In contrast, various attempted rearrangements of the acetate derived from anti-5 led only to decomposition.) The rearranged esters 16 could be isolated by crystallisation of this mixture but it was more convenient to hydrolyse them to the rearranged alcohols 17 which could easily be separated and purified. The ester anti-15 gave 93:7 anti:syn 17 while the syn ester was slightly less stereospecific ($90: 10$). The rearranged alcohols from the acid-catalysed acetylation route were identified by comparison with these diastereoisomers given the known ${ }^{9}$ suprafacial nature of the rearrangement.

The by-products were dienes 18: pure $E, E-18$ from $\operatorname{syn}-15$, and a $71: 29 E, Z: E, E-18$ mixture from anti-15. A concerted thermal ester elimination from syn-15 would indeed give $E, E-18$ while the loss of stereospecificity in elimination from anti-15 presumably reflects the crowded transition state leading to the E, Z-diene. Elimination cannot be avoided in this stereospecific rearrangement but we have since developed an alternative method which avoids it altogether. ${ }^{10}$

The other main limitation to this approach to alcohols such

as $\mathbf{1 7}$ is that the stereoselectivity of the original coupling of the lithium derivative of the phosphine oxide to the enal or enone determines the maximum material conversion into any single isomer. This coupling is normally anti (i.e., erythro) ${ }^{11}$ selective,
but only weakly so with enals and enones. ${ }^{10,12}$ One alternative approach involves the reduction of enones such as $\mathbf{1 9 ,} \mathbf{2 0}$ or 21. In general, such reactions requiring the 1,4 transmission of stereochemical information over a rigid E-alkene give very poor

Scheme 1 Rearrangement of allylic esters 15; Ar =p-nitrophenyl
selectivity, ${ }^{13}$ but we have found that the $\mathrm{Ph}_{2} \mathrm{PO}$ group is exceptionally good at directing this type of remote stereochemical induction.

The enone 19 was made ${ }^{2}$ by oxidative rearrangement of the mixture of alcohols 5 , and enones 20 and 21 by oxidation of the mixture of alcohols from the acid-catalysed acetylation route. Reduction of the enone 19 with NaBH_{4} gave a $67: 33$ mixture of alcohols 6 favouring the syn isomer. The more hindered reducing agent lithium tri-sec-butylborohydride (L-Selectride) gave good stereoselectivity ($>80: 20$) in favour of syn-6 which could be isolated in 69% yield. A strong NOE effect in the NMR spectrum ${ }^{2}$ of 19 between H^{A} and H^{B} suggests an approach of the hydride from the face opposite the $\mathrm{Ph}_{2} \mathrm{PO}$ group to conformation 19a of the enone. This conformation resembles the proposed conformation of the allyl cation 12 or an extended Felkin conformation ${ }^{11}$ with the $\mathrm{C}-\mathrm{P}$ bond parallel to the p orbitals of the enone. Reduction of the enones 20 and 21 with LSelectride again gave selectivity in favour of the syn alcohols 17 and 22, 72:28 when R is linear (hexyl), but $87: 13$ when R is branched (Pr^{i}). It is particularly useful that the major alcohol from the reduction has the syn stereochemistry of the minor product of the Horner-Wittig reaction.

An alternative approach to the anti isomers is based on our work with the bisbenzophosphole group. ${ }^{14}$ Though there was almost no stereoselectivity in the initial coupling of 23 with LDA and hexenal, Swern ${ }^{15}$ oxidation to the unstable enone and immediate reduction under the Luche ${ }^{16}$ conditions gave

19a
nearly pure anti-24. Recrystallisation gave pure anti-24; column chromatography of the original mixture gave pure syn- 24 in 45% yield. Each diastereoisomer was converted into its $3,5-$ dinitrobenzoate ester 25 and rearranged in benzonitrile at $150^{\circ} \mathrm{C}$ to give the alcohol anti-26 in 76% yield. The lower temperature is possible because the second nitro group accelerates the reaction. Rearrangement was complete and

Scheme 2 Rearrangement of dibenzophosphole analogues; Ar $=3,5$ dinitrophenyl
nearly stereospecific (93:7 for anti-22 and 90:10 for syn-22) with considerably less elimination: 6% of $Z, E-27$ from anti-24 and 6% of $E, E-27$ from syn- 24 .
This is probably the best that one can do by these methods and pure alcohols such as 6 and 17 were used to make epoxides and hence unsaturated compounds with control over both the chiral centres and the geometry of the double bond. ${ }^{8,17}$ For later and more demanding applications we prefer a Pd^{11} catalysed rearrangement. ${ }^{10}$

Experimental

(E)-5-Diphenylphosphinoyl-4-methyldec-2-en-4-ol E-5.Butyllithium ($1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane) was added dropwise to a stirred solution of hexyldiphenylphosphine oxide ${ }^{18}(1.44 \mathrm{~g}, 5 \mathrm{mmol})$ in dry ether ($50 \mathrm{~cm}^{3}$) under nitrogen at $0^{\circ} \mathrm{C}$ until a permanent red colour formed and then further butyllithium ($3.5 \mathrm{~cm}^{3}, 5 \mathrm{mmol}$) was added dropwise and the solution stirred for 10 min . A solution of pent-3-en-2-one (0.43 $\mathrm{g}, 5 \mathrm{mmol})$ in dry ether ($10 \mathrm{~cm}^{3}$) was added over 5 min and the solution was stirred for a further 10 min , after which saturated aqueous ammonium chloride ($20 \mathrm{~cm}^{3}$) was added, the layers were separated, and the aqueous layer was extracted with ether ($3 \times 20 \mathrm{~cm}^{3}$). The combined organic fractions were dried and evaporated under reduced pressure to give an oil which was purified by flash chromatography on silica, eluting with dichloromethane-ether (3:1) to give the allylic alcohol (1.2 g , 65%) as a colourless oil containing a $3: 2$ mixture of diastereoisomers. In a separate experiment the crude product $(0.9 \mathrm{~g})$ was purified on a short fat column of SiO_{2} eluting with EtOAc and by HPLC (EtOAc-70\% hexane; $14 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$) to give the two separate diastereoisomers. The major diastereoisomer $(0.22 \mathrm{~g}, 23 \%)$ formed white crystals, m.p. $97-98^{\circ} \mathrm{C}$ (from hexane) (Found: $\mathrm{C}, 74.5 ; \mathrm{H}, 8.55 . \mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{P}$ requires C , $74.6 ; \mathrm{H}, 8.45 \%$), R_{F} (EtOAc) 0.40 , HPLC retention time 13.5 $\min , v_{\text {max }} / \mathrm{cm}^{-1} 3350(\mathrm{OH}), 1440(\mathrm{PPh})$ and $1175(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.70(3 \mathrm{H}, \mathrm{t}, J 5, \mathrm{MeCH}) 0.8-1.8\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right]$ $1.26(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCOH}), 1.53(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{MeCH}), 2.30(1 \mathrm{H}, \mathrm{m}$, PCH) 5.37 (1 H , br d, $J 15$ and < $1, \mathrm{CH}=\mathrm{CHMe}$), $5.3(1 \mathrm{H}$, br s, $\mathrm{OH}), 5.75(1 \mathrm{H}, \mathrm{dq}, J 15$ and $6, \mathrm{CH}=\mathrm{C} H \mathrm{Me})$ and $7.3-8.0(10 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right) ; m / z 355(18 \%, \mathrm{M}-\mathrm{Me}) 286\left(45, \mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}\right)$ and 202 ($100, \mathrm{Ph}_{2} \mathrm{POH}$). The minor diastereoisomer $(0.25 \mathrm{~g}$, 26%) formed white crystals, m.p. $107-108{ }^{\circ} \mathrm{C}$ (from hexane) (Found: C, 74.3; H, 8.5. $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 74.6 ; \mathrm{H}$, 8.45%), R_{F} (EtOAc) 0.42 , HPLC retention time 12.5 min , $v_{\text {max }} / \mathrm{cm}^{-1} 3350(\mathrm{OH}), 1440(\mathrm{PPh})$ and $1163(\mathrm{P}=0) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $0.70(3 \mathrm{H}, \mathrm{t}, J 5.5, \mathrm{MeCH}), 0.8-1.8\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.11(3 \mathrm{H}$, dd, $J 6$ and < $1, M e C H$), $1.30(3 \mathrm{H}, \mathrm{s}, M e \mathrm{COH}), 2.2(1 \mathrm{H}, \mathrm{m}$, PCH), $5.15(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 15$ and $<1, \mathrm{C} H=\mathrm{CHMe}), 5.1(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}), 5.63(1 \mathrm{H}, \mathrm{dq}, J 15$ and $6, \mathrm{CH}=\mathrm{C} H \mathrm{Me})$ and $7.3-8.0(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$) $; \mathrm{m} / \mathrm{z} 355(1 \%, \mathrm{M}-\mathrm{Me}), 286\left(45, \mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}\right)$ and 202 ($100, \mathrm{Ph}_{2} \mathrm{POH}$).

Allylic Rearrangement of E-5 in Mineral Acid by the method of Braude and Stern. ${ }^{5}$--Dilute hydrochloric acid $\left(20 \mathrm{~cm}^{3}\right)$ was added to a solution of $E-5(2.5 \mathrm{~g}, 6.8 \mathrm{mmol})$ in dioxane $\left(50 \mathrm{~cm}^{3}\right)$ at room temperature. The solution was stirred for 10 min and extracted with dichloromethane ($3 \times 25 \mathrm{~cm}^{3}$). The combined organic fractions were dried $\left(\mathrm{NaSO}_{4}\right)$ and evaporated under reduced pressure to give an oil. TLC and ${ }^{1} \mathrm{H}$ NMR of this crude product showed that it was a $c a .2: 1$ mixture of diastereoisomers of the rearranged alcohols 6, and ca. 20% of dehydration products. The major diastereoisomer could be separated by flash chromatography on silica, eluting with MeOH in EtOAc, to give (2RS,5SR; E)-5-diphenylphosphinoyl-4-methyldec-3-en-2-ol (anti-6), ($0.4 \mathrm{~g}, 16 \%$) as white crystals, m.p. $131.5-132.5^{\circ} \mathrm{C}$ (from hexane: 25% EtOAc), $R_{\mathrm{F}}(\mathrm{EtOAc}$) 0.37 . For full characterisation see the minor diastereoisomer
obtained on reduction of the enone 19. The relative stereochemistry of anti-6 was determined by an X-ray crystal study. ${ }^{7}$
(E)-2-Benzylidene-1-(diphenylphosphinoylmethyl)cyclohexanol E-7.-Benzylidenecyclohexanone was prepared by the method of Walton ${ }^{19}$ and identified on the basis of spectroscopic evidence. ${ }^{20}$ Methyldiphenylphosphine oxide (2.16 g) in ether $\left(100 \mathrm{~cm}^{3}\right)$ was treated with butyllithium in hexane $\left(7 \mathrm{~cm}^{3}\right)$ and the enone (1.86 g) was treated in the usual way ${ }^{6}$ to give, after recrystallisation from ethyl acetate-hexane, the alcohol E-7 $\left(2.37 \mathrm{~g}, 59 \%\right.$), m.p. $142-144^{\circ} \mathrm{C}, R_{\mathrm{F}}$ (EtOAc) $0.5 ; v_{\text {max }} / \mathrm{cm}^{-1}$ $3300(\mathrm{OH})$ and $1190(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.2-7.9(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$), 6.5-7.2 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $\mathrm{C}=\mathrm{CH} \mathrm{Ph}$), $5.85(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $3.05\left(1 \mathrm{H}, \mathrm{dd}, J 8,15, \mathrm{PC} H^{\mathrm{A}} \mathrm{CH}^{\mathrm{B}}\right), 2.55(1 \mathrm{H}, \mathrm{dd}, J 12,15$, $\left.\mathrm{PCH}^{\mathrm{A}} \mathrm{CH}^{\mathrm{B}}\right), 2.5(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12, \mathrm{C}=\mathrm{CCH})$ and $0.9-2.1(7 \mathrm{H}$, m , remaining CHs) (Found: M^{+}, 402.1752. $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{P}$ requires $M, 402.1749$); $m / z 402\left(6 \%, \mathrm{M}^{+}\right), 384$ (87), 383 (58), 215 (91, $\mathrm{Ph}_{2} \mathrm{POCH}_{2}$), 202 ($100, \mathrm{Ph}_{2} \mathrm{POH}$) and 201 (66, $\mathrm{Ph}_{2} \mathrm{PO}$).
(E)-1-(Diphenylphosphinoylmethyl)-2-p-methoxybenzylidenecyclopentanol E-9.-In a similar way to that described above, methyldiphenylphosphine oxide (2.16 g), butyllithium in hexane ($7 \mathrm{~cm}^{3}$) and 2-p-methoxybenzylidenecyclopentanone ${ }^{19}(2.02 \mathrm{~g})$ gave, after recrystallisation from ethanol, the alcohol $E-9(52 \%)$, m.p. $141-143^{\circ} \mathrm{C}, R_{\mathrm{F}}$ (EtOAc) $0.34 ; v_{\text {max }} / \mathrm{cm}^{-1} 3340(\mathrm{OH}), 1605$ $(\mathrm{C}=\mathrm{C})$ and $1168(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.3-7.9\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$, $7.10(2 \mathrm{H}, \mathrm{d}, J 9, \mathrm{Ar}), 6.80(2 \mathrm{H}, \mathrm{d}, J 9, \mathrm{Ar}), 6.51(1 \mathrm{H}, \mathrm{t}, J 2.5$, $\mathrm{ArCH}=\mathrm{C}$), $5.46(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.0(1 \mathrm{H}, \mathrm{dd}, J$ $\left.10,15, \mathrm{PCH}^{\mathrm{A}} \mathrm{CH}^{\mathrm{B}}\right), 2.4\left(1 \mathrm{H}, \mathrm{dd}, J 8,15, \mathrm{PCH}^{\mathrm{A}} \mathrm{C} H^{\mathrm{B}}\right), 2.5(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}=\mathrm{CCH}_{2}\right)$ and $1.5-2.0\left(4 \mathrm{H}, \mathrm{m}\right.$, remaining $\left.\mathrm{CH}_{2} \mathrm{~s}\right) ; m / z 418$ $\left(1 \%, \mathrm{M}^{+}\right), 400$ (100), 215 ($15, \mathrm{Ph}_{2} \mathrm{POCH}_{2}$), 201 (44, $\mathrm{Ph}_{2} \mathrm{PO}$) and 198 ($100, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Ph}_{2} \mathrm{POH}$).
(E,E)-6-Benzylidene-1-(diphenylphosphinoylmethyl)cyclohexene E,E-8.-The alcohol $E-7(0.5 \mathrm{~g})$ was treated with HCl in dioxane to give, after recrystallisation from ethanol, the diene $E, E-8(220 \mathrm{mg}, 46 \%)$, m.p. $108-111^{\circ} \mathrm{C}, R_{\mathrm{F}}(\mathrm{EtOAc}) 0.25$; $v_{\max } / \mathrm{cm}^{-1} \quad 1210 \quad(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) \quad 7.2-8.0 \quad(10 \mathrm{H}, \quad \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 6.9-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.35(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}=), 5.9(1 \mathrm{H}, \mathrm{q}, J$ $\left.4, \mathrm{C}=\mathrm{CHCH}_{2}\right)$, $3.3\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{PH}} 15, \mathrm{PCH}_{2}\right)$ and 1.2-2.5 $(6 \mathrm{H}, \mathrm{m}$, remaining $\mathrm{CH}_{2} \mathrm{~s}$); $m / z 384\left(100 \%, \mathrm{M}^{+}\right)$, 383 (57), 202 (92 , $\mathrm{Ph}_{2} \mathrm{POH}$) and $201\left(40, \mathrm{Ph}_{2} \mathrm{PO}\right)$.
(E)-1-(Diphenylphosphinoylmethyl)-5-p-methoxybenzylidenecyclopentene E-10.-The alcohol E-9 (1 g) in methanol (170 cm^{3}) was treated with conc. $\mathrm{HCl}\left(1 \mathrm{~cm}^{3}\right)$ for 10 min at room temperature. Water ($100 \mathrm{~cm}^{3}$) and dichloromethane ($100 \mathrm{~cm}^{3}$) were added to the mixture and the layers separated; the aqueous layer was then extracted with dichloromethane ($2 \times 40 \mathrm{~cm}^{3}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated. Recrystallisation from ethyl acetate gave the diene $E, E-10(53 \%)$, m.p. $107-110^{\circ} \mathrm{C}, R_{\mathrm{F}}$ (EtOAc) 0.25 ; $v_{\text {max }} / \mathrm{cm}^{-1} \quad 1620,1605$ (diene) and 1197 ($\mathrm{P}=\mathrm{O}$); $\lambda_{\text {max }} / \mathrm{nm}$ $(\mathrm{EtOH}) 302$ (13100), 314 (8900), 293 (12000) and 221 (12400); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.3-7.9\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 7.24(2 \mathrm{H}, \mathrm{d}, J 9, \mathrm{Ar})$, 6.82 ($2 \mathrm{H}, \mathrm{d}, J$ 9, Ar), 6.13, 6.24 (each $1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C=CHs)}$, ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.30\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}} 14, \mathrm{PCH}_{2}\right.$) and $2.3-2.8(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{~s}$) $m / z 400\left(18 \%, \mathrm{M}^{+}\right), 215\left(14, \mathrm{Ph}_{2} \mathrm{POCH}_{2}\right.$), 201 (22, $\mathrm{Ph}_{2} \mathrm{PO}$) and 198 ($31, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Ph}_{2} \mathrm{POH}$) and 94 (100).
(E)-2-Acetoxy-5-diphenylphosphinoyl-4-methyldec-3-ene $\mathrm{E}-11$ by the Method of Babler. ${ }^{4}$-A diastereoisomeric mixture of E-5 ($0.75 \mathrm{~g}, 2 \mathrm{mmol}$) was dissolved in glacial acetic acid $\left(4 \mathrm{~cm}^{3}\right)$ and the solution added rapidly to a stirred solution of toluene-psulfonic acid monohydrate (180 mg) and acetic anhydride (4 cm^{3}) in glacial acetic acid ($8 \mathrm{~cm}^{3}$) at room temperature. Stirring was continued for 1.5 h under nitrogen. The solution was
poured into water $\left(100 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane ($3 \times 30 \mathrm{~cm}^{3}$) and the combined organic layers were washed with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aquous $\mathrm{NaOH}\left(40 \mathrm{~cm}^{3}\right)$, saturated aqueous sodium hydrogen carbonate ($40 \mathrm{~cm}^{3}$), and water (40 cm^{3}), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give an oil which was purified by flash chromatography; this afforded a 1.7:1 mixture (by ${ }^{1} \mathrm{H}$ NMR) of the diastereoisomers $(0.49 \mathrm{~g}, 60 \%)$ as a white crystalline solid. This mixture could not be separated, but a slightly higher running fraction from the above column was purified further by HPLC on silica, eluting with 3:2 EtOAc-hexane, to give the major ($2 R S, 5 S R$) diastereoisomer of the allylic acetate (anti-11) ($50 \mathrm{mg}, 6 \%$) as an oil, $R_{\mathrm{F}} 0.52, v_{\max } / \mathrm{cm}^{-1} 1732(\mathrm{C}=\mathrm{O}), 1440(\mathrm{PPh})$ and 1192 $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.7-1.0(6 \mathrm{H}, \mathrm{m}, \mathrm{MeCH} 2$ and MeCH$), 1.0-$ $2.0\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.71\left(3 \mathrm{H}, \mathrm{m}, J_{\mathrm{HP}}\right.$ and $\left.J_{\mathrm{HH}}<1, \mathrm{MeC}=\mathrm{CH}\right)$, $1.94(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 2.90(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 5.0-5.6(2 \mathrm{H}, \mathrm{m}$, $=\mathrm{CHCHOAc}$) and $7.3-8.0\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ (Found: M^{+}, 412.2169. $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{P}$ requires $M, 412.2167$); m/z $412(5 \%$, $\left.\mathbf{M}^{+}\right), 352(88, \mathbf{M}-\mathrm{AcOH})$ and $201\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$. The minor diastereoisomer showed peaks at $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.20(3 \mathrm{H}, \mathrm{d}, J 6$, $\mathrm{MeCH})$ and $1.90(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$. The relative stereochemistry was determined by hydrolysis to the allylic alcohol 6. The reaction was repeated under the same conditions on the separate diastereoisomers of 5 . The major diastereoisomer gave a $2: 1$ ratio (anti:syn) while the minor diastereoisomer gave a 1.3:1 ratio.

Hydrolysis of the Rearranged Allylic Ester E-anti-11.-A solution of E-anti- $11(50 \mathrm{mg}, 0.12 \mathrm{mmol})$ in a mixture of MeOH ($4 \mathrm{~cm}^{3}$) and 10% aqueous $\mathrm{NaOH}\left(1 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 30 min and extracted with ether $\left(3 \times 5 \mathrm{~cm}^{3}\right)$. The combined organic fractions were washed with water (2×5 cm^{3}), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude oil (one spot on TLC). ${ }^{1} \mathrm{H}$ NMR spectroscopy showed this product was pure anti-6. When the reaction was repeated using a $c a$. 1.7:1 diastereoisomeric mixture a clean reaction occurred to give a ca. 2:1 mixture of anti:syn-6
(E)-5-Diphenylphosphinoyldec-2-en-4-ol 13.-Butyllithium ($1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane) was added dropwise to a stirred solution of hexyldiphenylphosphine oxide $(42.9 \mathrm{~g}, 150$ mmol) in THF ($550 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ under nitrogen followed by further butyllithium ($105 \mathrm{~cm}^{3}, 160 \mathrm{mmol}$) added between $0^{\circ} \mathrm{C}$ and $-10^{\circ} \mathrm{C}$. A solution of freshly distilled crotonaldehyde ($11.0 \mathrm{~g}, 12.8 \mathrm{~cm}^{3}, 158 \mathrm{mmol}$) in THF $\left(150 \mathrm{~cm}^{3}\right)$ was added dropwise over 20 min with cooling at $-60^{\circ} \mathrm{C}$ to the mixture which was then warmed to $0^{\circ} \mathrm{C}$ over 15 min and quenched with saturated aqueous ammonium chloride $\left(50 \mathrm{~cm}^{3}\right)$. The THF was evaporated under reduced pressure and water ($400 \mathrm{~cm}^{3}$) was added to the residue, which was extracted with dichloromethane $\left(3 \times 200 \mathrm{~cm}^{3}\right)$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a white crystalline solid ($53.0 \mathrm{~g}, 98 \%$). Fractional recrystallisation of 35 g of this product followed by flash chromatography on silica, eluting with EtOAc-hexane ($1: 1$) followed by EtOAc, gave the separate diastereoisomers. The less soluble 4RS,5RSdiastereoisomer syn-13 ($10.28 \mathrm{~g}, 29 \%$), had m.p. $171.5-172{ }^{\circ} \mathrm{C}$ (from EtOAc-25\% hexane) (Found: C, $73.9 ; \mathrm{H}, 8.3 . \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 74.1 ; \mathrm{H}, 8.15 \%$), R_{F} (EtOAc: 33% hexane) 0.21 ; $v_{\text {max }} / \mathrm{cm}^{-1} 3350(\mathrm{OH}), 1440(\mathrm{PPh})$ and $1160(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{MeCH} 2), 1.0-2.0\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right]$, 1.43 (3 H, d, J 6, MeCH), 2.2-2.7 (1 H, m, PCH), 4.48 (1 H, dt, $J_{\mathrm{PH}} 18.5$ and $\left.J_{\mathrm{HH}} 5.5, \mathrm{CHOH}\right), 4.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.35(1 \mathrm{H}, \mathrm{dd}$, $J 16$ and $6, \mathrm{MeCH}=\mathrm{CH}), 5.65(1 \mathrm{H}, \mathrm{dq}, J 16$ and $6, \mathrm{MeCH}=\mathrm{CH})$, and 7.3-8.0 $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right) ; m / z 356\left(2 \%, \mathrm{M}^{+}\right), 338(4, \mathrm{M}-$ $\left.\mathrm{H}_{2} \mathrm{O}\right), 286$ [44, $\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Me}\right], 229$ (100, $\mathrm{Ph}_{2}-$ $\left.\mathrm{POCH}=\mathrm{CH}_{2}\right), 202\left(93, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and $201\left(38, \mathrm{Ph}_{2} \mathrm{PO}\right)$. The more soluble 4RS,5SR-diastereoisomer anti-13 (20.3 g, 57\%) had
m.p. 108-109 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{EtOAc}-75 \%$ hexane) (Found: $\mathrm{C}, 74.2 ; \mathrm{H}$, $8.2 \% ; \mathrm{M}^{+}, 356.1904 . \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 74.1 ; \mathrm{H}, 8.15 \% ; M$, $356.1905) ; \quad R_{\mathrm{F}}\left(\mathrm{EtOAc}-33 \%\right.$ hexane) $0.27 ; v_{\max } / \mathrm{cm}^{-1} 3400$ $(\mathrm{OH}), 1440(\mathrm{PPh})$ and $1160(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right), 0.72(3 \mathrm{H}, \mathrm{t}, J$ $7, \mathrm{MeCH} 2), 0.9-2.0\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], \mathrm{l} .63(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{MeCH})$, $2.2-2.5(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 4.57\left(1 \mathrm{H}, \mathrm{br}\right.$ ddd, $J_{\mathrm{PH}} 13, J_{\mathrm{HH}} 4$ and 2 , $\mathrm{CHOH}), 4.80(1 \mathrm{H}$, br s, OH$), 5.46(1 \mathrm{H}$, dd, $J 16$ and 6 , $\mathrm{MeCH}=\mathrm{CH}), 5.70(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 16$ and 6, $\mathrm{MeCH}=\mathrm{CH})$ and 7.3-8.0 $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right), 13.7(\mathrm{q}, \mathrm{MeCH} 2), 17.48(\mathrm{q}$, $\mathrm{MeCH}), 21.97$ and $22.18\left(2 \times \mathrm{t}, \mathrm{MeCH}_{2} \mathrm{CH}_{2}\right), 29.57\left(\mathrm{dt}, J_{\mathrm{PC}} 6.9\right.$, $\mathrm{PCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $31.55(\mathrm{t}, \mathrm{PCHCH} 2), 43.19\left(\mathrm{dd}, \mathrm{J}_{\mathrm{PC}} 68.0\right.$, $\mathrm{PCH}), 70.52(\mathrm{~d}, \mathrm{CHOH}), 126.51(\mathrm{~d}, \mathrm{CH}=\mathrm{CH})$ and 128.34-133.0 $\left(11 \mathrm{C}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\left.\mathrm{CH}=\mathrm{CH}\right) ; m / z 356\left(2 \%, \mathrm{M}^{+}\right), 338(5$, $\left.\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 286 \quad\left[53, \quad \mathrm{Ph}_{2} \mathrm{P}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Me}\right], 229$ (98, $\mathrm{Ph}_{2} \mathrm{POCH}: \mathrm{CH}_{2}$), 202 ($100, \mathrm{Ph}_{2} \mathrm{POH}$) and 201 (55, $\mathrm{Ph}_{2} \mathrm{PO}$). The syn and anti stereochemistries were assigned by comparison of the coupling constant between phosphorus and the proton adjacent to the hydroxy group for the two diastereoisomers. ${ }^{21}$
(E)-2-Acetoxy-4-diphenylphosphinoyldec-3-ene 14 by the Method of Babler. ${ }^{4}$-A solution of the diastereoisomeric mixture of $13(17.6 \mathrm{~g}, 50 \mathrm{mmol})$ in glacial acetic acid ($100 \mathrm{~cm}^{3}$) was added in one portion to a stirred solution of toluene-psulfonic acid (3.0 g) in acetic acid $\left(200 \mathrm{~cm}^{3}\right)$ and acetic anhydride $\left(100 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under nitrogen. The reaction mixture was allowed to warm to room temperature over 2 h and stirring was continued for 16 h . Sodium carbonate (3 g) was then added to the mixture and the solvent evaporated under reduced pressure to give an oil. A portion of this crude product was purified by flash chromatography on silica, eluting with EtOAc-hexane $(7: 3)$ to give a ca. $1: 1$ mixture of the acetates [$0.30 \mathrm{~g}, 68 \%$ overall yield from 4] as a colourless oil, R_{F} (EtOAc-66\% hexane) $0.21 ; v_{\max } / \mathrm{cm}^{-1} 1725(\mathrm{C}=\mathrm{O})$ and 1442 $(\mathrm{PPh}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.81\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{Me} \mathrm{CH}_{2}\right), 1.00$ and 1.05 $(3 \mathrm{H}, 2 \times \mathrm{t}, J 6.4, \mathrm{MeCH}), 1.0-2.1\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.93$ and $1.94(3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{MeCO}), 2.8-3.0(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 5.0-5.6(3 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CHCHOAc}$) and $7.3-7.9\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ (Found: \mathbf{M}^{+}, 398.2020. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{P}$ requires $M, 398.2011$); $m / z 398$ $\left(11 \%, \mathbf{M}^{+}\right), 339(5, \mathbf{M}-\mathrm{AcO}), 338(5, \mathbf{M}-\mathrm{AcOH}), 219$ (66), 202 (40, $\mathrm{Ph}_{2} \mathrm{POH}$) and 201 ($100, \mathrm{Ph}_{2} \mathrm{PO}$). The diastereoisomeric ratio was determined from the relative intensity of the signals at $\delta 1.00$ and 1.05 and also from those at $\delta 1.93$ and 1.94. The signals at $\delta 1.05$ and 1.93 were shown to be due to the $(2 R S, 4 R S)$ isomer syn-14 by unambiguous synthesis. Treatment of the major diastereoisomer of the unrearranged alcohol 13 under the same conditions gave a 98% yield of a $65: 35$ mixture of anti: syn-14 as a colourless oil (${ }^{1} \mathrm{H}$ NMR and TLC). The minor diastereoisomer gave a 98% yield of a $35: 65$ mixture of anti:syn-14 as a white solid. When the reaction was performed with a shorter reaction time (6 h) the crude product showed extra peaks in the ${ }^{1} \mathrm{H}$ NMR at $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.50$ and 1.85 due to the unrearranged acetate and its diastereoisomer.
(2RS,4RS; E)-2-Acetoxy-5-diphenylphospinoyldec-3-ene syn-14.-A solution of $\operatorname{syn}-13(1.78 \mathrm{~g}, 5 \mathrm{mmol})$, DMAP ${ }^{22}$ (100 mg) and acetic anhydride $(0.75 \mathrm{~g}, 7.5 \mathrm{mmol})$ in a mixture of triethylamine ($40 \mathrm{~cm}^{3}$) and THF ($40 \mathrm{~cm}^{3}$) was stirred at room temperature under nitrogen for 6 h . The solution was evaporated under reduced pressure and the oil dissolved in ether ($150 \mathrm{~cm}^{3}$). The solution was washed with saturated aqueous $\mathrm{CuSO}_{4}\left(2 \times 50 \mathrm{~cm}^{3}\right), 5 \%$ ammonia ($50 \mathrm{~cm}^{3}$) and water ($2 \times 50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give an oil. Purification of this by flash chromatography $\left(\mathrm{SiO}_{2} / \mathrm{EtOAc}-25 \%\right.$ hexane followed by $\mathrm{EtOAc})$ gave the acetate syn-14 ($0.087 \mathrm{~g}, 44 \%$) as a crystalline solid, m.p. $92-93^{\circ} \mathrm{C}$ (from hexane- $15 \% \mathrm{EtOAc}$) (Found: C, 72.1; $\mathrm{H}, 7.9 ; \mathrm{P} .7 .75 . \mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{C}, 72.4 ; \mathrm{H}, 7.8 ; \mathrm{P} .7 .8 \%$); $R_{F}(E t O A c-66 \% ~ h e x a n e) ~ 0.21 ; ~ v_{\max } / \mathrm{cm}^{-1} 1730 \quad(\mathrm{C}=\mathrm{O})$;
$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.75\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me} \mathrm{CH}_{2}\right), 1.05(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{MeCH})$, $0.9-2.0\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.93(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 2.8-3.2(1 \mathrm{H}, \mathrm{m}$, $\mathrm{PCH}), 5.1-5.9(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCHOAc})$ and $7.3-8.0(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$).
(4RS,5SR; E)-4-Acetoxy-5-diphenylphosphinoyldec-2-ene.In a similar way, anti-13 gave, without chromatography, the acetate ($1.32 \mathrm{~g}, 74 \%$) as a white crystalline solid, m.p. $112-$ $112.5^{\circ} \mathrm{C} ; \nu_{\max } / \mathrm{cm}^{-1} 1720(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.73(3 \mathrm{H}, \mathrm{t}$, $\mathrm{MeCH} 2), 0.9-1.8\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.50(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 1.60$ ($3 \mathrm{H}, \mathrm{d}, J 6, M e \mathrm{CH}$), $2.5-2.8(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 5.4-6.2(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CHCHO}$) and 7.5-8.0 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$) (Found: $\mathrm{M}^{+}, 398$, 1990. $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{3}$ P requires $M, 398.2011$); $\mathrm{m} / \mathrm{z} 398\left(2.5 \%, \mathrm{M}^{+}\right)$, 339 (65, M - AcO), [$\left.5 \%, \mathrm{Ph}_{2} \mathrm{P}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Me}\right], 269$ (14), 242 (9), 229 (26, $\mathrm{Ph}_{2} \mathrm{POCH}: \mathrm{CH}_{2}$), 202 ($87, \mathrm{Ph}_{2} \mathrm{POH}$) and 201 ($100, \mathrm{Ph}_{2} \mathrm{PO}$). Attempted rearrangement of this acetate by heating in $\left[{ }^{2} \mathrm{H}_{8}\right.$]toluene at $110^{\circ} \mathrm{C}$ for 24 h in an NMR tube alone or with toluene- p-sulfonic acid led to slow dehydration without rearrangement. The acetate when heated in a saturated solution ${ }^{22}$ of $\mathrm{Cu}(\mathrm{OAc})_{2}$ in either $\left[{ }^{2} \mathrm{H}_{8}\right.$]toluene or $\left[{ }^{2} \mathrm{H}_{3}\right]$ acetonitrile for several days at $60^{\circ} \mathrm{C}$ gave no reaction.
(E)-5-Diphenylphosphinoyldec-3-en-2-ol 17 by Hydrolysis of the Rearranged Acetates 14.-A solution of the crude mixture of rearranged acetates (20 mmol) and potassium carbonate (9 g) in methanol ($150 \mathrm{~cm}^{3}$) was stirred at room temperature for 6 h . The mixture was then diluted with water ($300 \mathrm{~cm}^{3}$) and extracted with dichloromethane ($3 \times 100 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a solid. Higher running impurities were separated on silica eluting with EtOAc-60\% hexane followed by EtOAc to give a ca. 1:1 mixture of alcohols syn and anti-13 $(6.12 \mathrm{~g}, 86 \%)$. Recrystallisation from EtOAc- 60% hexane gave the (2 RS, 5 SR) diastereoisomer anti- $13(2.6 \mathrm{~g}, 41 \%$) as a white crystalline solid, m.p. $127.5-128.5^{\circ} \mathrm{C} ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.11 ; v_{\max } /$ $\mathrm{cm}^{-1} 3300(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.81(3 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{MeCH} 2), 0.95$ $(3 \mathrm{H}, \mathrm{d}, J 6.5, M e \mathrm{CH}), 1.0-1.8\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.9(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 2.93\left(1 \mathrm{H}, \mathrm{ddt}, J_{\mathrm{HP}} 9, J_{\mathrm{HH}} 5\right.$ and $\left.9, \mathrm{PCH}\right), 4.13(1 \mathrm{H}, \mathrm{d}$ quintet, $J 2$ and $6.5, \mathrm{CHOH}), 5.36\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{HP}} 4, J_{\mathrm{HH}} 16$ and $6.5, \mathrm{CH}=\mathrm{CHCHOH}), 5.51\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{HP}} 10, J_{\mathrm{HH}} 16$ and 5 , $\mathrm{CH}=\mathrm{CHCHOH}$) and 7.4-7.9 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$) (Found: M^{+}, 356.1905. $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}$ requires $M, 356.1905$); $m / z 356$ (11%, M^{+}), 219 ($30, \mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}$), 202 ($89, \mathrm{Ph}_{2} \mathrm{POH}$) and 201 (100 , $\mathrm{Ph}_{2} \mathrm{PO}$). Evaporation of the mother liquors gave a $c a .7: 1$ mixture of diastereoisomers syn- and anti-13 as an oil $(2.9 \mathrm{~g}$, 47%) with the ($2 \mathrm{RS}, 5 \mathrm{RS}$) diastereoisomer syn- 13 predominating; $R_{\text {F }}$ (EtOAc) $0.11 ; \nu_{\text {max }} / \mathrm{cm}^{-1} 3300(\mathrm{OH}), 1440(\mathrm{P}-\mathrm{Ph}), 1250$ $(\mathrm{C}-\mathrm{O})$ and $1180(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.75(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{MeCH})$, $1.03(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{MeCH}), 1.0-2.1\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 2.8-3.2(2 \mathrm{H}$, m, PCH and OH$), 4.0-4.35(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 5.1-5.8(2 \mathrm{H}, \mathrm{m}$, $\mathbf{C H}=\mathrm{CH}$) and 7.3-8.1 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$) (Found: $\mathrm{M}^{+}, 356.1904$. $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}$ requires $\left.M, 356.1904\right)$; $m / z 356\left(0.72 \%, \mathrm{M}^{+}\right) 253$ (27), 227 (52), 219 ($100, \mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}$), 202 ($80, \mathrm{Ph}_{2} \mathrm{POH}$) and 201 (98, $\mathrm{Ph}_{2} \mathrm{PO}$). The diastereoisomeric ratio of syn to anti-13 was determined by comparison of the relative intensities of the signals at $\delta 1.03$ and 0.95 in the ${ }^{1} \mathrm{H}$ NMR spectrum .
(4RS,5SR; E)-5-Diphenylphosphinoyldec-2-en-4-yl Nitrobenzoate anti-15.-A solution of the alcohol anti-13 $(6.4 \mathrm{~g}, 19 \mathrm{mmol})$, 4-nitrobenzoyl anhydride ${ }^{24}(7.66 \mathrm{~g}, 27 \mathrm{mmol})$ and DMAP ${ }^{22}$ $(350 \mathrm{mg})$ in a mixture of triethylamine ($50 \mathrm{~cm}^{3}$) and THF (150 cm^{3}) was stirred at room temperature under nitrogen for 2.5 h before evaporation under reduced pressure. The residual oil was dissolved in ethyl acetate ($200 \mathrm{~cm}^{3}$) and the solution was washed with $2 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous $\mathrm{NaOH}\left(2 \times 50 \mathrm{~cm}^{3}\right), 1 \mathrm{~mol}$ dm^{-3} aqueous $\mathrm{HCl}\left(50 \mathrm{~cm}^{3}\right)$ and saturated aqueous NaHCO_{3} ($50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give an oil. Purification of this on a short fat column
($\mathrm{SiO}_{2} / \mathrm{EtOAc}-50 \%$ hexane) gave the ester $(7.85 \mathrm{~g}, 87 \%$) as a white crystalline solid, m.p. $134-134.5^{\circ} \mathrm{C}$ (from EtOAc-hexane) (Found: C, 68.7; H, 5.9; N, 2.8; P, 6.0\%; \mathbf{M}^{+}, 505.2034. $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 68.9 ; \mathrm{H}, 6.35 ; \mathrm{N}, 2.9 ; \mathrm{P}, 6.4 \% ; M$, 505.2018); R_{F} (EtOAc) 0.60; $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1729$ (C=O), 1538 and $1281\left(\mathrm{NO}_{2}\right)$, $1446(\mathrm{P}-\mathrm{Ph})$ and $1191(\mathrm{P}=\mathrm{O})$; δ_{H} $\left(\mathrm{CDCl}_{3}\right) 0.80(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{MeCH} 2) 1.0-2.0\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.70$ ($3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{MeCH}$), $2.7-3.1(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 5.5-6.2(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CHCHO}), 7.3-8.1\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and 7.88 and 8.21 (4 H , two distorted doublets, $J 8, \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}$); m/z 505 $\left(0.6 \%, \mathrm{M}^{+}\right), 339\left(38, \mathrm{M}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right), 202$ ($51, \mathrm{Ph}_{2} \mathrm{POH}$) and $201\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$.
(4RS,5RS; E)-5-Diphenylphosphinoyldec-2-en-4-yl Nitrobenzoate syn-15.-This compound, prepared in a similar way to that described above from syn-13, was a white crystalline solid (8.24 g, 91%), m.p. $137-137^{\circ} \mathrm{C}$ (from EtOAc-hexane) (Found: C, 68.7; H, 6.45; N, 3.0; P, 6.7, M^{+}, 505.2017. $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{P}$ requires C, $68.9 ; \mathrm{H}, 6.34 ; \mathrm{N}, 2.9 ; \mathrm{P}, 6.4 \% ; M, 505.2018) ; R_{\mathrm{F}}$ (EtOAc) 0.52; $\nu_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1729$ ($\mathrm{C}=0$), 1529 and 1278 $\left(\mathrm{NO}_{2}\right), 1442(\mathrm{P}-\mathrm{Ph})$ and $1182(\mathrm{P}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 0.66(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.7, \mathrm{Me} \mathrm{CH}_{2}\right), 0.8-2.0\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.63(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 5, \mathrm{MeCH})$, 2.90 ($1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}$), $5.6-6.1$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCHO}$), 7.3-8.1 $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and 7.99 and $8.22(4 \mathrm{H}$, two distorted doublets, $J 9, \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}$); m/z $505\left(4 \%, \mathrm{M}^{+}\right)$, 339 (29, $\mathrm{M}-\mathrm{NO}_{2} \mathrm{PhCO}_{2}$), 338 (16, M - $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}$), 254 (30) and 201 ($100, \mathrm{Ph}_{2} \mathrm{PO}$).
(2RS,5SR; E)-5-Diphenylphosphinoyldec-2-en-2-yl 4-Nitrobenzoate anti-16.-A solution of the ester anti-15 $\mathbf{(7 . 0 7 \mathrm { g } , 1 4}$ mmol) in benzonitrile ($220 \mathrm{~cm}^{3}$; deoxygenated by nitrogen for $10 \mathrm{~min})$ was heated at reflux $\left(190^{\circ} \mathrm{C}\right)$ under nitrogen for 1 h . The solution was cooled and the benzonitrile evaporated under reduced pressure to give a white solid. A small portion (100 mg) of this crude product was recrystallised to give the rearranged ester ($72 \mathrm{mg}, 72 \%$) as a white crystalline solid, m.p. $162-163{ }^{\circ} \mathrm{C}$ (from EtOAc-hexane) (Found: C, 68.8; H, 6.15; N, 3.1; P, 6.3\%; M^{+}505.2004. $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{P}$ requires $\mathrm{C}, 68.9 ; \mathrm{H}, 6.35 ; \mathrm{N}, 2.9 ; \mathrm{P}$, $6.4 \% ; M, 505.2018) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.32 ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1728$ $(\mathrm{C}=\mathrm{O}), 1534$ and $1288\left(\mathrm{NO}_{2}\right), 1445(\mathrm{P}-\mathrm{Ph})$ and $1190(\mathrm{P}=\mathrm{O})$; $\delta\left(\mathrm{CDCl}_{3}\right) 0.83(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{MeCH}), 1.0-2.0\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right]$, 1.27 ($3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{MeCH}$), $3.09(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}) 5.3-6.1(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CHCHO}), 7.3-8.1\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and 8.19 and 8.39 (4 H , two distorted doublets, $J 9, \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}$); m/z 505 $\left(\mathrm{M}^{+}, 6 \%\right), 448(40), 368$ (8), 338 ($10, \mathrm{M}-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$) and 201 ($100, \mathrm{Ph}_{2} \mathrm{PO}$).
(2RS,5SR; E)-5-Diphenylphosphinoyldec-3-4-yl4-Nitrobenzoate syn-16.-This compound was prepared in a similar way from syn-15. Recrystallisation of a small portion of the crude product (100 mg) gave the ester ($72 \mathrm{mg}, 72 \%$) as a white crystalline solid, m.p. ${ }^{176-177^{\circ} \mathrm{C}}$ (from EtOAc-hexane) (Found: C, 68.6; H, 6.1; N, 2.9; P, 6.3\%; M ${ }^{+}$, 505.2000 . $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{P}$ requires C, 68.9; H, 6.35; N, 2.9; $\mathrm{P}, 6.4 \% ; M$, 505.2018); R_{F} (EtOAc) 0.33; $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1728$ (C=O), 1529 and $1280\left(\mathrm{NO}_{2}\right), 1441(\mathrm{P}-\mathrm{Ph})$ and $1180(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}$ $\left(\mathrm{CDCl}_{3}\right) 0.78(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{MeCH} 2), 1.0-2.0\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right]$, 2.8-3.2 (1 H, m, PCH), 5.3-6.0 (3 H, m, CH=CHCHO), 7.3-8.0 $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and 8.18 and $8.34(4 \mathrm{H}$, two distorted doublets, $J 9, \mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}$); m/z $505\left(\mathrm{M}^{+}, 13 \%\right), 368(27)$, 339 (28, M $-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}$), 338 (36, M $-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$) and $201\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$.
(2RS,5SR; E)-5-Diphenylphosphinoyldec-3-en-2-ol anti-17 from the Rearranged 4-Nitrobenzoate.-A solution of the crude rearranged 4-nitrobenzoate anti-16 $(6.97 \mathrm{~g}, 13.8 \mathrm{mmol})$ and potassium carbonate (10.0 g) in methanol ($200 \mathrm{~cm}^{3}$) was stirred at room temperature under nitrogen for 24 h before evaporation
under reduced pressure and addition of ethyl acetate ($200 \mathrm{~cm}^{3}$). The resulting solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}\left(2 \times 50 \mathrm{~cm}^{3}\right)$ and water $\left(50 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a white solid. The higher running impurities were removed on a short fat column $\left(\mathrm{SiO}_{2} / \mathrm{EtOAc}\right.$ followed by $\left.\mathrm{EtOAc}-5 \% \mathrm{MeOH}\right)$ to give the alcohol $(4.10 \mathrm{~g}, 82 \%$ from anti-15) as a white crystalline solid, m.p. $127.5-128.5^{\circ} \mathrm{C} ; \boldsymbol{R}_{\mathrm{F}}(\mathrm{EtOAc}) 0.11$, identical by ${ }^{1} \mathrm{H}$ NMR to the less soluble diastereoisomer obtained by hydrolysis of the rearranged acetates. Comparison of the relative intensities of the signals at $\delta 1.00$ and 1.05 (both doublets) in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product showed it to be a $14: 1$ mixture of the diastereoisomers anti-and syn-17. Concentration of the higher running fractions from the column gave an oil (1.6 g) which was tentatively assigned as a $1.5: 1$ mixture of the ($2 E, 4 Z$)- and ($2 E, 4 E$)-isomers of 5-diphenylphosphinoyldeca-2,4-diene $18(1.6 \mathrm{~g}, 16 \%) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.36 ; \delta\left(\mathrm{CDCl}_{3}\right) 0.72$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{MeCH} 2), 0.9-1.3\left[6 \mathrm{H}, \mathrm{m}, \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{3}\right], 1.77^{\text {(major) }}$ and $1.82^{\text {(minor) }}(3 \mathrm{H}$, two doublets, $J 7, M e \mathrm{CH}), 1.9-2.4(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH} 2 \mathrm{C}=\mathrm{CH}), 5.7-7.0(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{C})$ and 7.3-7.9 $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$.
(2RS,5SR; E)-5-Diphenylphosphinoyldec-3-en-2-ol syn-17.This compound was obtained in a similar way from the rearranged 4-nitrobenzoate syn-16. The alcohol ($4.3 \mathrm{~g}, 75 \%$) was an oil which was identical, on the basis of ${ }^{1} \mathrm{H}$ NMR, MS and TLC evidence, with the more soluble diastereoisomer obtained by hydrolysis of the rearranged acetates. Comparison of the signals at $\delta 1.05$ in the ${ }^{1} \mathrm{H}$ NMR spectrum showed the product to be a $9: 1$ mixture of diastereoisomers of syn- and anti-17. The higher running fractions from the short fat column were concentrated to give (2E,4E)-5-diphosphinoyldeca-2,4-diene $18(2.25 \mathrm{~g}, 23 \%$) as colourless oil, $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.36 ; \delta\left(\mathrm{CDCl}_{3}\right) 0.77(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.M e \mathrm{CH}_{2}\right), 1.0-1.5\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.82(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{MeCH} 2)$, $1.0-1.5\left[5 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right], 1.82(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{MeCH}), 2.1-2.5(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), $5.98(1 \mathrm{H}, \mathrm{dq}, J 15$ and $7, \mathrm{MeCH}), 6.4-7.0(2 \mathrm{H}, \mathrm{m}$, $\mathrm{PC}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH})$ and $7.4-8.1\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ (Found: M^{+}, 338.1823. $\mathrm{C}_{22} \mathrm{H}_{27}$ OP requires $M, 338.1800$); $m / z 338\left(\mathrm{M}^{+}, 28 \%\right)$, 202 (95, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 (100, $\mathrm{Ph}_{2} \mathrm{PO}$).
(E)-5-Diphenylphosphinoyl-4-methyldec-3-en-2-one 19 ($\mathrm{R}=$ pentyl).-A solution of the alcohol $6(0.7 \mathrm{~g}, 2.0 \mathrm{mmol})$ in dichloromethane $\left(2 \mathrm{~cm}^{3}\right)$ was added in one portion to a stirred suspension of pyridinum chlorochromate ${ }^{25}(0.41 \mathrm{~g}, 2.0 \mathrm{mmol})$ in dichloromethane $\left(3 \mathrm{~cm}^{3}\right)$ at room temperature and stirring continued for 2 h . Ether ($5 \mathrm{~cm}^{3}$) was added to the mixture, the supernatant solution was decanted and the black resinous residue washed with ether $\left(3 \times 2 \mathrm{~cm}^{3}\right)$. The combined organic fractions were washed with $2 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous NaOH (10 $\left.\mathrm{cm}^{3}\right), 2$ mol dm${ }^{-3}$ aqueous $\mathrm{HCl}\left(10 \mathrm{~cm}^{3}\right)$ and saturated aqueous $\mathrm{NaHCO}_{3}\left(2 \times 5 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give an oil. The oil was purified by column chromatography $\left(\mathrm{SiO}_{2} / \mathrm{EtOAc}-25 \%\right.$ hexane) to give the enone $\left(0.42 \mathrm{~g}, 60 \%\right.$) as white crystals, m.p. $138-140^{\circ} \mathrm{C}$ (from EtOAchexane) (Found: $\mathrm{C}, 75.2 ; \mathrm{H}, 7.95 \% ; M^{+} 368.1915 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 7.9 \% ; M, 368.1905), R_{\mathrm{F}} 0.46 ; v_{\max }(\mathrm{Nujol}) /$ $\mathrm{cm}^{-1} 1685$ and $1612(\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}), 1439(\mathrm{P}-\mathrm{Ph})$ and $1191(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.80\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6, \mathrm{Me} \mathrm{CH}_{2}\right), 1.0-2.0[8 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{4}\right], 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 2.06\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HP}} 2.5, J_{\mathrm{HH}}<1\right.$, $\mathrm{MeC}=\mathrm{C}), 2.95(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 6.13\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{\mathrm{HP}}\right.$ br d, $J_{\mathrm{HP}} 4$, $\mathrm{CHCO})$ and $7.3-8.1\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$. Irradiation of the signal at $\delta 6.13$ caused an 11% enhancement of the signal at $\delta 2.95$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right), 13.95\left(\mathrm{q}, M e \mathrm{CH}_{2}\right), 19.79(\mathrm{q}, M e \mathrm{C}=\mathrm{C}), 22.38(\mathrm{t}$, $\mathbf{M e C H} 2), 27.50\left(\mathrm{t}, \mathrm{MeCH}_{2} \mathrm{CH}_{2}\right), 27.77\left(\mathrm{dt}, J_{\mathrm{CP}} 13.0, \mathrm{PCHCH}_{2}{ }^{-}\right.$ CH_{2}), $\left.31.41(\mathrm{t}, \mathrm{PCHCH})_{2}\right), 31.81(\mathrm{q}, \mathrm{MeCO}), 51.80\left(\mathrm{dd}, J_{\mathrm{CP}} 64.4\right.$, PCH), 128.34-131.97 (11 C, m, $\mathrm{Ph}_{2} \mathrm{PO}$ and $\mathrm{MeC}=C$), 152.38 (s, $\mathrm{MeC}=\mathrm{C}$) and 197.98 (s, CO) (Found: $\mathrm{M}^{+}, 368.1915 . \mathrm{C}_{23} \mathrm{H}_{29}{ }^{-}$ $\mathrm{O}_{2} \mathrm{P}$ requires $M, 368.1905$); $m / z 368$ ($10.4 \% \mathrm{M}$), 325 (45, $\mathrm{M}-$

MeCO), 219 ($100, \mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}$) and 201 (80, $\mathrm{Ph}_{2} \mathrm{PO}$); $\lambda_{\text {max }}{ }^{-}$ $(\mathrm{EtOH}) / \mathrm{nm} 205,226$ and $248(\varepsilon 24700,20700$ and 12600$)$.
(E)-5-Diphenylphosphinoyldec-3-en-2-one 20.-(a) By Collins oxidation. ${ }^{26}$ Chromium trioxide ($18 \mathrm{~g}, 0.18 \mathrm{~mol}$, flakes pre-dried over $\mathrm{P}_{2} \mathrm{O}_{5}$), was added in one portion to a well stirred solution of pyridine ($28.5 \mathrm{~g}, 0.37 \mathrm{mmol}$, pre-dried on UG 1 alumina) in dry dichloromethane ($500 \mathrm{~cm}^{3}$) and stirring continued for 20 min under a dry atmosphere. A solution of the crude mixture of alcohols syn- and anti-17 from hydrolysis of the rearranged acetates ($8.72 \mathrm{~g}, 24.5 \mathrm{mmol}$) in dichloromethane ($20 \mathrm{~cm}^{3}$) was added in one portion and stirring continued at room temperature for 30 min . Silica (100 g) was added to the mixture and stirring continued for a further 10 min . Filtration, thorough washing of the silica with ethyl acetate and evaporation of the combined organic fractions under reduced pressure gave an oil which was dissolved in ether ($200 \mathrm{~cm}^{3}$). The solution was washed with $2 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous $\mathrm{NaOH}\left(2 \times 100 \mathrm{~cm}^{3}\right), 1 \mathrm{~mol}$ dm^{-3} aqueous $\mathrm{HCl}\left(100 \mathrm{~cm}^{3}\right)$ and brine $\left(50 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give an oil. Purification of this by flash chromatography ($\mathrm{SiO}_{2}-\mathrm{EtOAc}$) gave the enone $(6.0 \mathrm{~g}, 68 \%)$ as a white crystalline solid, m.p. $137-138^{\circ} \mathrm{C}$ (from $\mathrm{EtOAc}-$ hexane); R_{F} (EtOAc) 2.24; $v_{\text {max }}{ }^{-}$ (Nujol) $/ \mathrm{cm}^{-1} 1678$ and $1621(\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}), 1442(\mathrm{P}-\mathrm{Ph})$ and 1188 $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.81(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{MeCH} 2), 1.0-2.0[8 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{4}\right], 2.14(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 3.0-3.4(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 6.01(1 \mathrm{H}$, dd, $J 16$ and $4, \mathrm{CH}=\mathrm{CHCO}$), 6.75 (1 H , ddd, $J 16,10$ and 6, $\mathrm{CH}=\mathrm{CHCO})$ and $7.4-7.8\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $13.80(\mathrm{q}, \mathrm{MeCH} 2), 22.20\left(\mathrm{t}, \mathrm{MeCH}_{2}\right), 26.64(\mathrm{q}, \mathrm{MeCO}), 27.05$ $\left(\mathrm{t}, \mathrm{MeCH}_{2} \mathrm{CH}_{2}\right), 27.59\left(\mathrm{dt}, J_{\mathrm{PC}} 11.9, \mathrm{PCHCH}_{2} \mathrm{CH}_{2}\right), 31.09(\mathrm{t}$, PCHCH ${ }_{2}$), 44.71 (dd, $\left.J_{\mathrm{PC}} 65.6, \mathrm{PCH}\right), 128.4-131.93$ ($10 \mathrm{C}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$), 135.05 (dd, $J_{\mathrm{PC}} 11.1, \mathrm{CH}=C \mathrm{HCO}$), 142.49 (dd, $J_{\mathrm{PC}} 6.3$, $C \mathrm{H}=\mathrm{CHCO}$) and 197.36 (s, C=O) (Found: M^{+}, 354. 1753. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{P}$ required $M, 354$. 1749); m/z $354\left(2.5 \%, \mathrm{M}^{+}\right)$, 311 $(5, \mathrm{M}-\mathrm{MeCO}), 297 \quad\left[2.5 \mathrm{M}-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Me}\right], 219$ (100, $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}$), 202 (30, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 (55, $\mathrm{Ph}_{2} \mathrm{PO}$).
(b) By pyridinium chlorochromate oxidation. A suspension of the crude mixture of alcohols $(0.5 \mathrm{~g}, 1.4 \mathrm{mmol})$ pyridinium chlorochromate ${ }^{25}(0.6 \mathrm{~g}, 2.8 \mathrm{mmol})$ and flash silica $(1.2 \mathrm{~g})$ in dichloromethane ($10 \mathrm{~cm}^{3}$) was stirred at room temperature under nitrogen for 2 h . The suspension was filtered and the silica thoroughly washed with ethyl acetate $\left(100 \mathrm{~cm}^{3}\right)$. The combined organic fractions were washed with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aqueous $\mathrm{NaOH}\left(2 \times 50 \mathrm{~cm}^{3}\right), 1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aqueous $\mathrm{HCl}(50$ cm^{3}) and brine ($50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the enone $(0.34 \mathrm{~g}, 68 \%$) as a white solid which was pure by TLC and identical (on the basis of ${ }^{1} \mathrm{H}$ NMR evidence) with the recrystallised product of Collins oxidation. This second method of oxidation is much cleaner.

Reduction of Compound 19 with Sodium Borohydride.Sodium borohydride ($12 \mathrm{mg}, 0.3 \mathrm{mmol}$) was dissolved in a mixture of methanol $\left(3 \mathrm{~cm}^{3}\right)$ and 10% aqueous $\mathrm{NaOH}\left(0.2 \mathrm{~cm}^{3}\right)$ and added in one portion to a solution of the enone $19(111 \mathrm{mg}$, 0.3 mmol) in methanol ($3 \mathrm{~cm}^{3}$). Stirring of the mixture was continued for 15 min after which $2 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous $\mathrm{HCl}(10$ cm^{3}) was carefully added dropwise to it. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 5 \mathrm{~cm}^{3}\right)$ and the combined organic fractions were washed with saturated aqueous $\mathrm{NaHCO}_{3}(10$ cm^{3}) and water ($10 \mathrm{~cm}^{3}$), dried (MgSO_{4}) and evaporated under reduced pressure. The crude oil was purified on a short fat column $\left(\mathrm{SiO}_{2}-\mathrm{EtOAc}\right)$ and by HPLC (EtOAc- 10% hexane, 14 $\mathrm{cm}^{3} \min ^{-1}$) which give two major products: (2RS,5SR)-5-diphenylphosphinoyl-4-methyldec-3-en-2-ol (anti-6) (37 mg, 34%) as an oil, $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.37$; HPLC retention time 11.5 min ; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3570$ and $3300 \mathrm{br}(\mathrm{OH}), 1440(\mathrm{P}-\mathrm{Ph})$ and 1178 $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.80\left(3 \mathrm{H}, \mathrm{t}, J 7, M e \mathrm{CH}_{2}\right), 0.84(3 \mathrm{H}, \mathrm{d}, J 6$, $M e \mathrm{CH}), 0.9-1.9\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right], 1.66(3 \mathrm{H}, \mathrm{m}, J<1, \mathrm{MeC}=\mathrm{C})$,
$2.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.86(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 4.40(1 \mathrm{H}$, quintet, $J 6$, $\mathrm{CHOH}), 5.20\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HP}} 4, J_{\mathrm{HH}} 6, \mathrm{C}=\mathrm{CH}\right)$ and $7.3-8.0(10 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$) (Found: $\mathrm{M}^{+}, 370.2074 . \mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{P}$ requires M, 370.2062); $m / z 370(1.5 \% \mathrm{M}), 202$ (96, $\mathrm{Ph}_{2} \mathrm{POH}$) and 201 (100 $\mathrm{Ph}_{2} \mathrm{PO}$); and (2RS, 5SR)-5-diphenylphosphinoyl-4-methyldec-3-en-2-ol (syn-6) ($59 \mathrm{mg}, 54 \%$) as an oil; $R_{\text {F }}$ (EtOAc) 0.33; HPLC retention time $15.5 \mathrm{~min} ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3550$ and 3300 br $(\mathrm{OH}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1178(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.80(3 \mathrm{H}, \mathrm{t}, J 5$ $\left.M e \mathrm{CH}_{2}\right), 1.10(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{MeCH}), 1.0-2.2\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right]$, $1.68(3 \mathrm{H}, \mathrm{m}, J<1, \mathrm{MeC}=\mathrm{C}), 2.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.90(1 \mathrm{H}, \mathrm{m}$, $\mathrm{PCH}), 4.40(1 \mathrm{H}$, br quintet, $J 8$ and $<1, \mathrm{CHOH}), 5.21(1 \mathrm{H}$, br dd, $J<1,8$ and $5, \mathrm{C}=\mathrm{CH})$ and $7.3-8.0\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ (Found: $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 252.1962 . \quad \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{OP}$ requires M, 252.1956); $m / z 252\left(21 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 202\left(100, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 (100, $\mathrm{Ph}_{2} \mathrm{PO}$).

L-Selectride Reductions.-The enone 19. Lithium tri-secbutylborohydride (L-Selectride) ($1 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF; $12 \mathrm{~cm}^{3}, 12 \mathrm{mmol}$) was added dropwise over 5 min to a stirred solution of the enone ($3.68 \mathrm{~g}, 10 \mathrm{mmol}$) in dry THF ($200 \mathrm{~cm}^{3}$) at $-65^{\circ} \mathrm{C}$ under nitrogen and stirring continued for 30 min . Further L-Selectride ($2 \mathrm{~cm}^{3}, 2 \mathrm{mmol}$) was added to the mixture and stirring continued for a further 30 min . After this, acetone $\left(15 \mathrm{~cm}^{3}\right)$ was added to the solution which was then warmed to $-30^{\circ} \mathrm{C}$. After 10 min , a mixture of $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aqueous NaOH $\left(20 \mathrm{~cm}^{3}\right)$ and hydrogen peroxide (100 volume equivalent solution; $20 \mathrm{~cm}^{3}$) was added to the mixture over 5 min with cooling (exothermic reaction). The solution was stirred at $10^{\circ} \mathrm{C}$ for 20 min , after which water $\left(200 \mathrm{~cm}^{3}\right)$ was added to it and the pH adjusted to 6 with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aqueous HCl . The THF was removed under reduced pressure and the aqueous solution extracted with dichloromethane ($3 \times 120 \mathrm{~cm}^{3}$). The combined organic fractions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give a colourless oil. All traces of butan-2-ol were removed under high vacuum. Flash chromatography $\left(\mathrm{SiO}_{2} / \mathrm{EtOAc}-2 \% \mathrm{MeOH}\right)$ gave recovered enone ($0.7 \mathrm{~g}, 19 \%$) and the (2RS, 5RS)-allylic alcohol syn-6 ($2.38 \mathrm{~g}, 65 \%, 81 \%$ based on recovered starting material) as an oil, identical [on the basis of TLC (EtOAc), IR and ${ }^{1} \mathrm{H}$ NMR evidence] to the major diastereoisomer obtained on sodium borohydride reduction of 19. None of the other diastereoisomer anti-6 was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reduction product ($>6: 1$ stereoselectivity).

The enone 20. This reaction was carried out in a similar way at $-65^{\circ} \mathrm{C}$ but with an extended reaction time of 3 h . The crude product was separated from baseline material by PLC $\left(\mathrm{SiO}_{2}-\right.$ EtOAc) to give a colourless oil ($130 \mathrm{mg}, 74 \%$). Comparison of the methyl doublets at $\delta 1.03$ and 0.94 in the ${ }^{1} \mathrm{H}$ NMR spectrum showed that this product was a $2.6: 1$ mixture of the allylic alcohol diastereoisomers syn-17 and anti-17 respectively.
Attempted Reduction of the Enone 19 with REDAL.Reduction of the enone ($0.55 \mathrm{~g}, 1.5 \mathrm{mmol}$) in dry THF ($50 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ under nitrogen with sodium bis(2-methoxyethoxy)lithium aluminium hydride (REDAL) ${ }^{27}$ ($3.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution; $0.95 \mathrm{~cm}^{3}, 3.4 \mathrm{mmol}$) gave a mixture purified by flash chromatography ($\mathrm{SiO}_{2} / \mathrm{EtOAc}-10 \%$ hexane) to give diphenylphosphine oxide ${ }^{28}(230 \mathrm{mg}, 72 \%)$ and a ca. $2: 1$ mixture of geometric isomers of 4-methyldec-4-en-2-ol $(45 \mathrm{mg}, 18 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.90$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{MeCH} 2), 1.19^{\text {(major) }}$ and $1.21^{\text {(minor) }}(3 \mathrm{H}$, two doublets, $J 7, \mathrm{CHCH}), 1.1-1.5\left[6 \mathrm{H}, \mathrm{m}, \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{3}\right], 1.63^{\text {(major) }}$ and $1.73^{\text {(minor) }}\left(3 \mathrm{H}, 2 \times \mathrm{br} \mathrm{s}, \quad \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right), 1.8-2.3(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{CCH}_{2}\right), 3.7-4.1(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{OH})$ and $5.30^{\text {(major) }}$ and $5.38^{\text {(minor) }}(1 \mathrm{H}, 2 \times$ br $\mathrm{t}, J 7, \mathrm{CH}=\mathrm{C})$. Irradiation at $\delta 3.9$ causes the signals at $\delta 1.19$ and 1.21 to collapse to a broad singlet. Irradiation at $\delta 1.20$ causes the signal at $\delta 3.7-4.1$ to simplify to two double doublets the major one of which has $J 8$ and 5 (Found: $\mathrm{M}^{+}-\mathrm{H}, 169.1502 . \mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}$ requires $M-\mathrm{H}$, 169.1513); m/z $169.9(15 \%, \mathrm{M}-\mathrm{H}), 152(4, \mathrm{M}-\mathrm{OH}), 153$
(4, M $-\mathrm{H}_{2} \mathrm{O}$), 125 (20, $\left.\mathrm{M}-\mathrm{MeCHOH}\right)$ and 85 (100). The slower running component was a single geometric isomer of 4-methyldec-3-en-2-ol, $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{MeCH} 2)$, $1.0-2.3(15 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{dq}, J 8$ and $6, \mathrm{CHOH})$ and $5.29(1$ H , br d, $J 8, \mathrm{CH}=\mathrm{C}$) (Found: $\mathrm{M}^{+}-\mathrm{H}_{2}, 168.1517 . \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}$ requires $M-\mathrm{H}_{2} 168.1520$); $m / z 169(16 \%, \mathrm{M}-\mathrm{H}), 168(34$, $\left.M-\mathrm{H}_{2}\right), 153(32, \mathrm{M}-\mathrm{OH}) 129(40)$ and $69\left(100, \mathrm{C}_{4} \mathrm{H}_{9}\right)$.
(2RS,5SR; E)- and (2RS,5RS; E)-Diphenylphosphinoyl-6-methylhept-3-en-2-yl Acetates.-A solution of a $65: 35$ mixture ${ }^{10}$ of (4RS,5SR; E)- and (4RS,5RS; E)-5-diphenylphos-phinoyl-6-methylhept-2-en-4-ol ($1.97 \mathrm{~g}, 6.0 \mathrm{mmol}$) in glacial acetic acid ($15 \mathrm{~cm}^{3}$) was added in one portion to a solution of toluene- p-sulfonic acid monohydrate (3 mmol) in acetic anhydride ($7.5 \mathrm{~cm}^{3}$) and glacial acetic acid ($7.5 \mathrm{~cm}^{3}$). The mixture was stirred under nitrogen for 24 h , poured into water ($50 \mathrm{~cm}^{3}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 5\right)$. The combined organic fractions were washed with dilute aqueous ammonia and saturated brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The crude product, R_{F} (EtOAc) 0.40 , was hydrolysed directly without purification.
(2RS,5RS; (E)-5-Diphenylphosphinoyl-6-methylhept-3-en-2ol syn-22.-Aqueous sodium hydroxide ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 12 \mathrm{~cm}^{3}$) was added to a stirred solution of above mixture of rearranged acetates (6.0 mmol) in methanol ($50 \mathrm{~cm}^{3}$); heat was generated. The mixture was stirred at the resulting raised temperature for 60 min and then diluted with water $\left(100 \mathrm{~cm}^{3}\right)$. Much of the methanol was removed under reduced pressure and the residue was extracted with dichloromethane $(\times 3)$. The combined organic fractions were washed with saturated brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated to yield a crude product, which was purified by flash chromatography, eluting with EtOAc and with $\mathrm{EtOAc}-10 \% \mathrm{MeOH}$, to yield a white solid ($1.837 \mathrm{~g}, 93 \%$ from the unrearranged alcohols). HPLC showed that this was a 53:47 mixture of anti-22 and syn-22. Further purification by HPLC, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-6 \% \mathrm{MeOH}$, gave the alcohol syn$22(0.624 \mathrm{~g}, 32 \%)$ as prisms, m.p. $178-179^{\circ} \mathrm{C}$ (from EtOAc), $\boldsymbol{R}_{\mathrm{t}}$ 21 min (Found: C, $72.95 ; \mathbf{H}, 7.55 ;$ P. 9.49%; $\mathrm{M}-\mathrm{Me}, 313.1372$. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 73.15 ; \mathrm{H}, 7.67 ; \mathrm{P} .9 .43 \% ; M-\mathrm{Me}$, $313.1357) ; R_{F}(\mathrm{EtOAc}) 0.13 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3360(\mathrm{OH})$, $1450(\mathrm{PPh})$ and $1150(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.9-7.3$ $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.73(1 \mathrm{H}$, dddd, $J 15.0,10.6,6.0$ and 0.5 , $\mathrm{PCHCH}=\mathrm{C}), 5.36(1 \mathrm{H}$, ddd, $J 16.0,6.3$ and $4.1, \mathrm{C}=\mathrm{CHCHOH})$, $4.14(\mathrm{~d} \times$ quintet, $J 0.5$ and $5.9, \mathrm{CHOH}), 2.83(1 \mathrm{H}$, ddd, J $11.1,8.3$ and $3.3, \mathrm{PCH}), 2.19(1 \mathrm{H}, \mathrm{d} \times$ septet, $J 3.3$ and 7.0 , $\mathrm{CH} \mathrm{Me}_{2}$), $1.8(1 \mathrm{H}$, br s, OH$), 1.05\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$, $1.03\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$ and $0.88(3 \mathrm{H}, \mathrm{d}, J 6.3$, $\mathrm{CHOHMe}) ; \quad \delta_{\mathrm{C}}\left(100 \quad \mathrm{MHz} ; \quad \mathrm{CDCl}_{3}\right) \quad 141.8 \quad\left({ }^{3} \mathrm{~J}_{\mathrm{PC}} \quad 12.0\right.$, $\mathrm{C}=\mathrm{CHCHOH}), 134-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 120.7\left({ }^{2} J_{\mathrm{PC}} 6.4, \mathrm{PCHCH}=\mathrm{C}\right)$, $67.9(\mathrm{CHOH}), 49.5\left({ }^{1} J_{\mathrm{PC}} 68.0, \mathrm{PCH}\right), 27.5\left(C \mathrm{HMe}_{2}\right), 23.0$ (CHOHMe), $22.9\left({ }^{3} \mathrm{~J}_{\mathrm{PC}}\right.$ 12.6, $\left.\mathrm{CHM} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $18.9\left({ }^{3} J_{\mathrm{PC}} 2.2\right.$, $\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}$); $m / z 313(1 \%, \mathrm{M}-\mathrm{Me}), 310\left(2, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 285$ (13, M $-\mathrm{C}_{3} \mathrm{H}_{7}$), $219\left(23, \mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}\right), 202\left(81, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 (100, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$. Also obtained was anti-22 ($0.919 \mathrm{~g}, 47 \%$), $\boldsymbol{R}_{\mathrm{t}}$ 22.5 min.
(E)-5-Diphenylphosphinoyl-6-methylhept-3-en-2-one 21.Oxalyl chloride ($1.5 \mathrm{~cm}^{3}, 17.2 \mathrm{mmol}$) was added to a stirred solution of DMSO ($1.45 \mathrm{~cm}^{3}, 20.4 \mathrm{mmol}$) in dry dichloromethane ($75 \mathrm{~cm}^{3}$) at $-70^{\circ} \mathrm{C}$ under nitrogen. After 10 min , a solution of the mixed alcohols $22(3.1816 \mathrm{~g}, 9.69 \mathrm{mmol})$ in dry dichloromethane ($50 \mathrm{~cm}^{3}$) was added to it, and then, after a further 5 min , triethylamine $\left(7 \mathrm{~cm}^{3}, 50 \mathrm{mmol}\right)$. Stirring was continued at $-70^{\circ} \mathrm{C}$ for 10 min , before the mixture was allowed to warm to $10^{\circ} \mathrm{C}$ over 30 min . Water $\left(100 \mathrm{~cm}^{3}\right)$ was added to the mixture and the layers were separated; the aqueous fraction was extracted with dichloromethane $(\times 2)$. The combined
organic fractions were washed with saturated brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to yield a crude product. Purification of this by flash chromatography, eluting with $8: 1 \mathrm{EtOAc}$-hexane, gave the enone $21(2.85, \mathrm{~g} \mathrm{90} \mathrm{\%}$) as fine needles, m.p. $121-122^{\circ} \mathrm{C}$ (from EtOAc) (Found: M^{+}, 326.1432. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ requires $M, 326.1436$); R_{F} (EtOAc) 0.32; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1677,1655(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C}), 1445(\mathrm{PPh})$ and $1160(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.0-7.5(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 6.95(1 \mathrm{H}$, ddd, $J 16.1,10.9$ and $6.7, \mathrm{PCHCH}=\mathrm{CH}), 5.95$ (1 H , dd, $J 16.0$ and $3.7, \mathrm{CH}=\mathrm{CHCO}$), $3.11(1 \mathrm{H}$, ddd, $J 11.0,7.8$ and $3.3, \mathrm{CHP}$), $2.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right), 2.23(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.21$ ($3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe} \mathrm{A}_{\mathrm{B}}$) and $1.04\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right.$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 197.4\left({ }^{4} J_{\mathrm{PC}} 1.7, \mathrm{C}=0\right), 140.0\left({ }^{2} J_{\mathrm{PC}} 6.0\right.$, $\mathrm{PCHCH}-\mathrm{CH}), \quad 136.5 \quad\left({ }^{3} \mathrm{~J}_{\mathrm{PC}} \quad 11.0, \quad \mathrm{CH}=\mathrm{CHCO}\right), \quad 133-128$ ($\mathrm{Ph}_{2} \mathrm{PO}$), 50.4 (${ }^{1} J_{\mathrm{PC}} 65.4, \mathrm{CHP}$), $28.1\left({ }^{5} J_{\mathrm{PC}} 2.9, \mathrm{MeCO}\right), 26.4$ $\left(C \mathrm{HMe}_{2}\right)$, $23.1\left({ }^{3} J_{\mathrm{PC}}\right.$ 12.0, $\left.\mathrm{CH} \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $18.9\left({ }^{3} J_{\mathrm{PC}}\right.$ 2.6, $\left.\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 326\left(12 \%, \mathrm{M}^{+}\right), 283(16, \mathrm{M}-\mathrm{Ac}), 219(95$, $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}$), 202 (58, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right), 201$ (82, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$ and 77 (100, Ph).

L-Selectride Reduction of the Enone 21.-L-Selectride (1 mol dm^{-3} solution; $14 \mathrm{~cm}^{3}, 14 \mathrm{mmol}, 1.9$ equiv.) was added to a stirred solution of the enone $21(2.37 \mathrm{~g}, 7.26 \mathrm{mmol})$ in dry THF ($150 \mathrm{~cm}^{3}$) at $-70^{\circ} \mathrm{C}$ under nitrogen. Stirring was continued at $-70^{\circ} \mathrm{C}$ for 20 min , after which the reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$. Acetone $\left(10 \mathrm{~cm}^{3}\right)$ was added to it followed by $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aqueous sodium hydroxide ($20 \mathrm{~cm}^{3}$) and aqueous hydrogen peroxide [26% (100 volumes); $20 \mathrm{~cm}^{3}$]. After a few minutes, the mixture was poured into water (200 cm^{3}) and neutralised with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid. Most of the THF was removed under reduced pressure and the aqueous residue was extracted into dichloromethane $(\times 4)$. The combined organic fractions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to yield a crude solid, which HPLC showed to consist of an $87: 13$ mixture of syn-22 and anti-22 (eluting with chloroform- $5 \% \mathrm{MeOH} ; R_{\mathrm{t}}$'s 45 and 50 $\mathrm{min})$. One recrystallisation from ethyl acetate gave the pure (by HPLC and ${ }^{1} \mathrm{H}$ NMR) alcohol syn-22 ($1.665 \mathrm{~g}, 70 \%$).
(E)-2-(5-Oxodibenzophosphol-5-yl)oct-4-en-3-ol 24.-5-Ethyl-5H-dibenzophosphole 5-oxide ${ }^{14,29} 23(2.0 \mathrm{~g}, 8.77 \mathrm{mmol})$ in THF ($80 \mathrm{~cm}^{3}$) was added dropwise to a solution of LDA [from butyllithium ($1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane; $8.2 \mathrm{~cm}^{3}$) and diisopropylamine ($1.42 \mathrm{~g}, 14.0 \mathrm{mmol}$)] in THF ($40 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. The deep red solution was cooled to $-78^{\circ} \mathrm{C}$ and (E)-hex-2-enal ($1.21 \mathrm{~g}, 12.3 \mathrm{mmol}$) was added dropwise to it so that the temperature remained $<-75^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then diluted with water $\left(20 \mathrm{~cm}^{3}\right)$. The mixture was allowed to warm to room temperature and the THF was evaporated under reduced pressure. Brine ($40 \mathrm{~cm}^{3}$) was added to the mixture which was then extracted with dichloromethane ($4 \times 50 \mathrm{~cm}^{3}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a foam. ${ }^{1} \mathrm{H}$ NMR analysis $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the double doublets at $\delta 0.81$ and 0.51 , and analytical HPLC (eluting with $\mathrm{EtOAc}-3 \% \mathrm{MeOH}$) showed that this was a $46: 54$ mixture of diastereoisomers syn and anti-24 (HRF:LRF). These were separated by flash column chromatography on silica gel (6 cm), eluting with ethyl acetate -3% methanol. The first diastereoisomer to be eluted from the column was the ($2 R S, 3 \mathrm{SR}$)-adduct anti-24 (1.11 g, 39\%) as plates [from EtOAc-light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)], m.p. $192-194^{\circ} \mathrm{C}$ (Found: C, 73.3; H, 7.1; P. $9.6 \% ; \mathrm{M}^{+}, 326.1456 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 73.6 ; \mathrm{H}, 7.1 ; \mathrm{P}$. $9.5 \% ; M, 326.1346), \quad R_{\mathbf{F}}$ (EtOAc) $0.37 ; v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right) 3380$ br OH), $3000-2840(\mathrm{CH}), 1665(\mathrm{C}=\mathrm{C}), 1600(\mathrm{Ph})$, $1440(\mathrm{P}-\mathrm{Ph})$ and $1155(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.99-7.36$ ($8 \mathrm{H}, \mathrm{m}$, dibenzo-H), $5.78\left[1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{d}} 15.2, J_{\mathrm{t}} 6.5, \mathrm{CH}(\mathrm{OH})\right.$ $\mathrm{CH}=\mathrm{CH}], 5.60(1 \mathrm{H}$, ddd, $J 15.2,5.6,1.0, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}=\mathrm{CH})$,
$4.98(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}), 2.45\left(1 \mathrm{H}, \mathrm{ddq}, J_{\mathrm{PH}} 13.1, J_{\mathrm{d}} 2.6, J_{\mathrm{q}} 7.3, \mathrm{PCH}\right)$, $1.7\left(1 \mathrm{H}\right.$, br s, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}\right), 2.05(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J c a .7$, $\mathrm{CH}=\mathrm{CHCH}_{2}$), $1.37\left(2 \mathrm{H}\right.$, sextet, $\left.J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right), 0.89(3 \mathrm{H}, \mathrm{t}, J$ $7.3, \mathrm{CH}_{2} \mathrm{Me}$) and $0.81\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 18.7, J_{\mathrm{HH}} 7.3, \mathrm{PCHMe}\right) ; m / z$ $326\left(3 \%, \mathrm{M}^{+}\right), 228\left(100, \mathrm{Ar}_{2} \mathrm{POEt}\right), 200\left(64, \mathrm{Ar}_{2} \mathrm{POH}\right), 199(61$, $\left.\mathrm{Ar}_{2} \mathrm{PO}\right)$ and $152\left(28, \mathrm{Ar}_{2}\right)$. Next to be eluted was a mixture of diastereoisomers ($85 \mathrm{mg}, 3 \%$). The second diastereoisomer to be eluted from the column was the ($2 R S, 3 R S$)- adduct syn- 24 ($1.28 \mathrm{~g}, 45 \%$) as microcrystals [from EtOAc-light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)], m.p. $192-194^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 73.8 ; \mathrm{H}, 7.25 ; \mathrm{P}$, $9.5 \% ; \mathrm{M}^{+}, 326.1434 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 73.6 ; \mathrm{H}, 7.1 ; \mathrm{P}$. $9.5 \% ; M, 326.1436) ; \quad \boldsymbol{R}_{\mathrm{F}}$ (EtOAc) $0.30 ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right) 3380 \mathrm{br}(\mathrm{OH}), 3000-2830(\mathrm{CH}), 1670(\mathrm{C}=\mathrm{C}), 1600(\mathrm{Ph})$, $1440(\mathrm{P}-\mathrm{Ph})$, and $1155(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.95-$ $7.40\left(8 \mathrm{H}, \mathrm{m}\right.$, dibenzo-H), $5.70\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{d}} 15.2, J_{1} 7.2\right.$, $\mathrm{OCHCH}=\mathrm{CH}), 5.46(1 \mathrm{H}, \mathrm{dd}, J 15.2,7.7, \mathrm{OCHCH}=\mathrm{CH}), 4.49$ (1 H, br q, J ca. 8, OCH), $2.43(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 2.01(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CHCH}_{2}\right), 1.38\left(2 \mathrm{H}\right.$, sextet, $\left.J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right), 1.2(1 \mathrm{H}$, br s, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}\right), 0.86\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right)$ and 0.51 ($\left.3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 19.2, J_{\mathrm{HH}} 7.3, \mathrm{PCHMe}\right) ; \mathrm{m} / \mathrm{z} 326\left(5 \%, \mathrm{M}^{+}\right), 228$ (100, $\left.\mathrm{Ar}_{2} \mathrm{POEt}\right), 200\left(57, \mathrm{Ar}_{2} \mathrm{POH}\right), 199$ (56, $\left.\mathrm{Ar}_{2} \mathrm{PO}\right)$ and 152 (16, Ar_{2}).
(E)-2-(5-Oxodibenzophosphol-5-yl)oct-4-en-3-one.--Dimethyl sulfoxide ($53 \mathrm{mg}, 0.68 \mathrm{mmol}$) in dichloromethane ($0.45 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of oxalyl chloride ($43 \mathrm{mg}, 0.34 \mathrm{mmol}$) in dichloromethane $\left(2.4 \mathrm{~cm}^{3}\right.$) at $-60^{\circ} \mathrm{C}$. The mixture was stirred at $-60^{\circ} \mathrm{C}$ for 2 min after which the enol 24 ($46: 54$ mixture of diastereoisomers; 100 mg , $0.31 \mathrm{mmol})$ in dichloromethane $\left(0.9 \mathrm{~cm}^{3}\right)$ was added to it. The mixture was stirred at $-60^{\circ} \mathrm{C}$ for 15 min and then N, N diisopropylethylamine $\left(0.2 \mathrm{~cm}^{3}\right)$ was added to it. The mixture was stirred at $-60^{\circ} \mathrm{C}$ for 5 min and was then allowed to warm to room temperature over 20 min when it was diluted with water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a brown oil which was purified by flash column chromatography on a short ($8 \times 1 \mathrm{~cm}$) column of silica gel, eluting with ethyl acetate to give the enone ($90 \mathrm{mg}, 90 \%$) as an unstable oil; this decomposed over ca. 24 ; at $0^{\circ} \mathrm{C}, R_{\mathrm{F}}(\mathrm{EtOAc}) 0.33 ; \nu_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 2960-2840(\mathrm{CH})$, $1680(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C})$ and $1600(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.86-7.38\left(8 \mathrm{H}, \mathrm{m}\right.$, dibenzo-H), $6.91\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{d}} 15.4, J_{1} 7.0\right.$, $\mathrm{COCH}=\mathrm{CH}), 6.34(1 \mathrm{H}, \mathrm{d}, J 15.4 \mathrm{COCH}=\mathrm{CH}), 3.88(1 \mathrm{H}, \mathrm{dq}$, $\left.\left.J_{\mathrm{PH}} 18.4, J_{\mathrm{HH}} 7.0, \mathrm{PCH}\right), 2.16(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J c a .7, \mathrm{CH}=\mathrm{CHCH})_{2}\right)$, $1.46\left(2 \mathrm{H}\right.$, sextet, $\left.J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right), 1.05\left(3 \mathrm{H}\right.$, dd, $J_{\mathrm{PH}} 17.7, J_{\mathrm{HH}} 7.0$, PCHMe) and $0.91\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right.$) (Found: M^{+}, 324.1267. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{P}$ requires $M, 324.1279$); m/z 324 (30%, \mathbf{M}^{+}), 228 (43, Ar $\mathbf{A O E t}_{2}$, 217 (38, $\mathrm{Ar}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}$), 200 (74, $\mathrm{Ar}_{2} \mathrm{POH}$), 199 (100, $\left.\mathrm{Ar}_{2} \mathrm{PO}\right)$ and 152 (48, Ar_{2}).

Reduction of (E)-2-(5-Oxodibenzophosphol-5-yl)oct-4-en-3-one.-Sodium borohydride $(5.6 \mathrm{mg}, 0.148 \mathrm{mmol})$ in ethanol ($1 \mathrm{~cm}^{3}$) was added over 10 min to a stirred solution of cerium chloride heptahydrate ($55 \mathrm{mg}, 0.148 \mathrm{mmol}$) and the enone (48 $\mathrm{mg}, 98 \%$) in methanol $\left(1 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. The mixture was stored at this temperature for 1 h after which $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right.$, $1 \mathrm{~cm}^{3}$) was added to it. Solvents were evporated from the mixture under reduced pressure and water $\left(10 \mathrm{~cm}^{3}\right)$ was added to the residue which was then extracted with dichloromethane ($3 \times 10 \mathrm{~cm}^{3}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The product was purified by chromatography on a short $(2 \mathrm{~cm})$ column of silica, eluting with ethyl acetate to give the alcohol 24 as a white solid. ${ }^{1} \mathrm{H}$ NMR analysis ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of the double doublets at $\delta 0.81$ and 0.51 showed that this was a ca. $95: 5$ mixture of the $(2 R S, 3 S R)$-anti- 24 and ($2 R S, 3 R S$)-syn 24 adducts.

Oxidation and Immediate Reduction of the Alcohols 24.Dimethyl sulfoxide ($53 \mathrm{mg}, 0.68 \mathrm{mmol}$) in dichloromethane ($0.45 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of oxalyl chloride ($43 \mathrm{mg}, 0.34 \mathrm{mmol}$) in dichloromethane ($2.4 \mathrm{~cm}^{3}$) at $-60^{\circ} \mathrm{C}$. The mixture was stirred at $-60^{\circ} \mathrm{C}$ for 2 min after which the enol 24 ($46: 54$ mixture of diastereoisomers, 100 mg , $0.31 \mathrm{mmol})$ in dichloromethane $\left(0.9 \mathrm{~cm}^{3}\right)$ was added to it. The mixture was stirred at $-60^{\circ} \mathrm{C}$ for 15 min and then $N, N-$ diisopropylethylamine $\left(0.2 \mathrm{~cm}^{3}\right)$ was added to it. The mixture was stirred at $-60^{\circ} \mathrm{C}$ for 5 min and then was allowed to warm to room temperature over 20 min . Solvent was evaporated from the mixture under reduced pressure (high vacuum, $0^{\circ} \mathrm{C}$) and the residue was reduced by sodium borohydride ($126 \mathrm{mg}, 0.31$ mmol) and cerium chloride heptahydrate ($115 \mathrm{mg}, 0.31 \mathrm{mmol}$) to give (E)-2-(5-oxodibenzophosphol-5-yl)oct-4-en-3-ol 24 (83 $\mathrm{mg}, 83 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR analysis $(250 \mathrm{MHz}$, CDCl_{3}) of the double doublets at $\delta 0.81$ and 0.51 and analytical HPLC (eluting with ethyl acetate -3% methanol) showed that this was a $93: 7$ mixture of the ($2 R S, 3 S R$)-anti-22 and ($2 R S, 3 R S$)-syn- 24 adducts. Recrystallisation from ethyl acetate-light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) gave the ($2 R S, 3 S R$)adduct anti-24 ($72 \mathrm{mg}, 72 \%$).
(2RS,3SR; E)-3-(3,5-Dinitrobenzoyloxy)-2-(5-oxodibenzo-phosphol-5-yl)oct-4-ene anti-25.-3,5-Dinitrobenzoyl chloride $(0.849 \mathrm{~g}, 3.68 \mathrm{mmol})$ was added under argon to a stirred solution of the enol anti-24 ($1.0 \mathrm{~g}, 3.07 \mathrm{mmol}$) and 4-dimethylaminopyridine ($0.45 \mathrm{~g}, 3.68 \mathrm{mmol}$) in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h and then purified by flash column chromatography on silica gel $(3 \mathrm{~cm})$, eluting with ethyl acetate to give the $\operatorname{ester}(1.46 \mathrm{~g}, 91 \%)$ as needles [from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)], m.p. ${ }^{196-197}{ }^{\circ} \mathrm{C}$ (Found: C, $62.6 ; \mathrm{H}, 5.25 ; \mathrm{N}, 5.3 ; \mathrm{P}, 6.2 \% ; \mathrm{M}^{+}$, 520.1364. $\mathrm{C}_{2}{ }_{7} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{P}$ requires C, 62.3; H, 4.85; N, 5.4; P, $6.0 \% ; M, 520.1399) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.32 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3100-$ $2850(\mathrm{CH}), 1735(\mathrm{C}=0)$, $1665(\mathrm{C}=\mathrm{C}), 1630,1600(\mathrm{Ph})$ and 1545 and $1345\left(\mathrm{NO}_{2}\right) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.16(1 \mathrm{H}, \mathrm{t}, J 2.0, \mathrm{Ar}-$ $4-\mathrm{H}$), $8.74(2 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{Ar}-2,6-\mathrm{H}), 7.91-7.28$ ($8 \mathrm{H}, \mathrm{m}$, dibenzoH), $5.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCHCH}=\mathrm{CHCH}_{2}\right), 5.42(1 \mathrm{H}, \mathrm{dd}, J 14.4,6.3$, $\mathrm{OCHCH}=\mathrm{CH}), 2.70(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 1.92(2 \mathrm{H}, \mathrm{br}, \mathrm{q}, J c a .7$, $\left.\mathrm{CH}=\mathrm{CHCH}_{2}\right), 1.60\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 15.6, J_{\mathrm{HH}} 7.3, \mathrm{PCHMe}\right), 1.29$ (2 H , sextet, J 7.3, $\mathrm{CH}_{2} \mathrm{Me}$) and $0.81\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right)$ (irradiation of the signal at $\delta 0.81$ led to a simplification of the signal at $\delta 1.29$; irradiation of the signal at $\delta 1.29$ led to a simplification of the signals at $\delta 0.89$ and 1.92; irradiation of the signal at $\delta 1.60$ led to a simplification of the signal at $\delta 2.70$; irradiation of the signal at $\delta 1.92$ led to a simplification of the signals at $\delta 1.29$ and 1.60 ; and irradiation of the signal at $\delta 2.70$ led to a simplification of the signals at $\delta 1.60$ and 5.60$) ; m / z 520\left(6 \%, \mathrm{M}^{+}\right), 308\left(32, \mathrm{M}-\mathrm{ArCO}_{2} \mathrm{H}\right)$, 200 ($58, \mathrm{Ar}_{2} \mathrm{POH}$) and 199 ($100, \mathrm{Ar}_{2} \mathrm{PO}$).
(2RS,3SR; E)-3-(3,5-Dinitrobenzoyloxy)-2-(5-oxodibenzo-phosphol-5-yl)oct-4-ene syn-25.-In the same way, 3,5 -dinitrobenzoyl chloride ($0.849 \mathrm{~g}, 3.68 \mathrm{mmol}$), the enol syn-24 (1.0 g , 3.07 mmol) and 4-dimethylaminopyridine ($0.45 \mathrm{~g}, 3.68 \mathrm{mmol}$) in dichloromethane ($10 \mathrm{~cm}^{3}$) gave, after purification by flash column chromatography on silica gel (3 cm) eluting with ethyl acetate, the ester ($1.50 \mathrm{~g}, 94 \%$) as needles [from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)], m.p. $175-176^{\circ} \mathrm{C}$ (Found: C, 62.3 ; $\mathrm{H}, 4.9 ; \mathrm{N}, 5.4 ; \mathrm{P}, 5.9 \% ; \mathrm{M}^{+}, 520.1422 . \mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{P}$ requires $\mathrm{C}, 62.3 ; \mathrm{H}, 4.85 ; \mathrm{N}, 5.4 ; \mathrm{P}, 6.0 \% ; M, 520.1399) ; R_{\mathrm{F}}$ (EtOAc) 0.40 ; $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3100-2870(\mathrm{CH}), 1730(\mathrm{C}=\mathrm{O}) 1665(\mathrm{C}=\mathrm{C})$, 1630, $1600(\mathrm{Ph}), 1545,1345\left(\mathrm{NO}_{2}\right)$ and $1160(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $9.14(1 \mathrm{H}, \mathrm{t}, J 2.1, \mathrm{Ar}-4-\mathrm{H}), 8.79(2 \mathrm{H}, \mathrm{d}, J 2.1$, Ar-2,6-H), 7.94-7.29 (8 H, m, dibenzo-H), 5.79 ($1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{d}} 14.3$, $\left.J_{1} 7.0, \mathrm{OCHCH}=\mathrm{CH}\right), 5.43(2 \mathrm{H}, \mathrm{m}, \mathrm{OCHCH}), 3.01(1 \mathrm{H}, \mathrm{m}$, PCH), 1.95 ($2 \mathrm{H}, \mathrm{br}$ q , J ca. $7, \mathrm{CH}=\mathrm{CHCH}_{2}$), $1.33(2 \mathrm{H}$, sextet, J
7.3, $\mathrm{CH}_{2} \mathrm{Me}$), 1.28 (3 H , dd, $J_{\mathrm{PH}} 16.2, J_{\mathrm{HH}} 7.4, \mathrm{PCHM}$ e) and 0.83 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{2} \mathrm{Me}$); $m / z\left(20 \%, \mathrm{M}^{+}\right), 309\left(46, \mathrm{M}-\mathrm{ArCO}_{2}\right)$ and $308\left(100, \mathrm{M}-\mathrm{ArCO}_{2} \mathrm{H}\right)$.
(2RS,5SR; E)-2-(5-Oxodibenzophosphol-5-yl)oct-3-en-5-ol anti-26.-The enol anti-25 ($200 \mathrm{mg}, 0.38 \mathrm{mmol}$) in benzonitrile $\left(15 \mathrm{~cm}^{3}\right)$ was heated to $150^{\circ} \mathrm{C}$ for 1 h , cooled and the solvent evaporated under reduced pressure (high vacuum). The residue was dissolved in methanol ($10 \mathrm{~cm}^{3}$) and potassium carbonate $(300 \mathrm{mg})$ was added to the solution. The mixture was stirred at room temperature for 1 h after which saturated aqueous ammonium chloride ($10 \mathrm{~cm}^{3}$) was added to it, methanol removed by evaporation under reduced pressure and the residue extracted with dichloromethane ($4 \times 10 \mathrm{~cm}^{3}$). The combined organic fractions were washed with saturated aqueous sodium hydrogen carbonate $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and water $\left(10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a yellow oil. This was purified by flash column chromatography on silica gel ($2 \mathrm{~cm}^{3}$), eluting with ethyl acetate -5% methanol. The first product to be eluted was ($2 Z, 4 E$)-2-(5-oxodibenzophosphol-5-yl)octa-2,4-diene $Z, E-27$ ($9 \mathrm{mg}, 8 \%$) as a colourless oil, R_{F} ($\mathrm{EtOAc}-5 \% \mathrm{MeOH}$) 0.46 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.81-7.22(9 \mathrm{H}, \mathrm{m}$, dibenzo-H and $\mathrm{PC}=\mathrm{CH} . \mathrm{CH}=\mathrm{CH}), 6.85\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 37.4, J_{\mathrm{HH}} 11.6, \mathrm{PC}=\right.$ $\mathrm{CHCH}=\mathrm{CH}$), 5.87 ($1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{d}} 14.7, J_{1} 7.4, \mathrm{PC}=\mathrm{CH} . \mathrm{CH}=\mathrm{CH}$), $2.19\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.4,=\mathrm{CHCH}_{2}\right), 1.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.36(3 \mathrm{H}$, d, J_{PH} 14.4, PCMe) and $0.93\left(3 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{Me}\right.$) (irradiation of the signal at $\delta 2.19$ led to a simplification of the signals at $\delta 1.44$ and 5.87 ; irradiation of the signal at $\delta 5.87$ led to a simplification of the signals at $\delta 2.19$ and 7.64 ; irradiation of the signal at $\delta 6.85$ led to a simplification of the signal at δ 7.64; irradiation of the signal at $\delta 7.64$ led to a simplification of the signals at $\delta 5.87$ and 6.85) (Found: $\mathrm{M}^{+}, 308.1331$. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{OP}$ requires, $M, 308.1331$); $m / z 308\left(77 \%, \mathrm{M}^{+}\right)$, 265 (69, $\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 200 ($100, \mathrm{Ar}_{2} \mathrm{POH}$), 199 ($75, \mathrm{Ar}_{2} \mathrm{PO}$), 183 ($60, \mathrm{Ar}_{2} \mathrm{P}$), and $152\left(46, \mathrm{Ar}_{2}\right.$). The second product to be eluted was the alcohol anti-26 ($94 \mathrm{mg}, 76 \%$), as a gum $R_{\mathrm{F}}(\mathrm{EtOAc}-5 \%$ $\left.\mathrm{MeOH}) 0.16 ; v_{\max } / \mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3340$ br (OH), $3000-2840$ $(\mathrm{CH}), 1660(\mathrm{C}=\mathrm{C}), 1600(\mathrm{Ph})$, and $1150(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.83-7.36\left(8 \mathrm{H}, \mathrm{m}\right.$, dibenzo-H), $5.47\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{PH}} 4.1$, J_{d} 15.5, 7.1, PCHCH=CH), 5.36 (1 H , ddd, $J 15.5,6.2,4.1$, PCHCH=CH $), 3.90(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}), 3.00\left(1 \mathrm{H}, \mathrm{d}\right.$ quint, $J_{\mathrm{PH}} 17.1$, $\left.J_{\mathrm{q}} 7.1, \mathrm{PCH}\right), 1.8\left(1 \mathrm{H}, \mathrm{br}\right.$ s, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}\right), 1.30$ ($3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 7.1, \mathrm{PCH} M e$), $1.30-0.94\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$) and $0.82\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{Me}\right)$ (irradiation of the signal at δ 1.30 led to a simplification of the signals at $\delta 0.82,3.00$ and 3.90 ; irradiation of the signal at $\delta 3.00$ led to a simplification of the signals at $\delta 3.00$ and 5.47 ; irradiation of the signal at $\delta 3.90$ led to a simplification of the signal at $\delta 5.36$) (Found: M^{+}, 326.1425. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ requires M, 326.1435); m/z 326 $\left(10 \%, \mathrm{M}^{+}\right), 283$ ($30, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 200 ($98, \mathrm{Ar}_{2} \mathrm{POH}$), 199 (100, $\mathrm{Ar}_{2} \mathrm{PO}$) and 152 (20, Ar_{2}). Analytical HPLC (eluting with ethyl acetate- 5% methanol) showed that this contained $c a$. 5% of the ($2 R S, 5 R S$)-adduct syn-26.
(2RS,5SR; E)-2-(5-Oxodibenzophosphol-5-yl)oct-3-en-5-ol syn-26.-($2 R S, 3 R S$; E)-3-(3,5-Dinitrobenzoyloxy)-2-)-5-oxodi-benzophosphol-5-yl)oct-4-ene syn- 25 ($90 \mathrm{mg}, 0.17 \mathrm{mmol}$) in benzonitrile $\left(5 \mathrm{~cm}^{3}\right)$ was heated to $150^{\circ} \mathrm{C}$ for 1 h , cooled and the solvent evaporated under reduced pressure (high vacuum). The residue was dissolved in methanol ($5 \mathrm{~cm}^{3}$) and potassium carbonate (150 mg) was added to the solution. The mixture was stirred at room temperature for 1 h after which saturated aqueous ammonium chloride $\left(10 \mathrm{~cm}^{3}\right)$ was added to it, the methanol removed by evaporation under reduced pressure and the residue extracted with dichloromethane ($4 \times 10 \mathrm{~cm}^{3}$). The combined organic fractions were washed with saturated aqueous sodium hydrogen carbonate $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and water
($10 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a yellow oil. This was purified by flash column chromatography on silica gel $(1 \mathrm{~cm})$, eluting with ethyl acetate5% methanol. The first product to be eluted was identified at ($2 \mathrm{E}, 4 \mathrm{E}$)-2-(5-oxodibenzophosphol-5-yl)octa-2,4-diene E,E-27 ($3 \mathrm{mg}, 6 \%$) as a colourless oil, $R_{\mathrm{F}}(\mathrm{EtOAc}-5 \% \mathrm{MeOH}) 0.46$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.80-7.31(9 \mathrm{H}, \mathrm{m}$, dibenzo-H and $\mathrm{PC}=\mathrm{C} H \mathrm{CH}=\mathrm{CH}), 6.35$ (1 H , ddd, $J_{\mathrm{PH}} 1.8, J_{\mathrm{HH}} 14.7,11.0, \mathrm{PC}=$ $\mathrm{CHCH}=\mathrm{CH}), 6.12\left(1 \mathrm{H}, \mathrm{dt}, J_{\mathrm{d}} 14.7, J_{\mathrm{t}} 7.3, \mathrm{PC}=\mathrm{CHCH}=\mathrm{CH}\right)$, $2.15\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 3,=\mathrm{CHCH}_{2}\right), 1.48(2 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 1.41(3 \mathrm{H}, \mathrm{d}$, $J_{\mathrm{PH}} 15.2, \mathrm{PCMe}$) and $0.92\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{CH}_{2} \mathrm{Me}\right)$ (irradiation of the signal at $\delta 1.48$ led to a simplification of the signal at δ 2.15 ; irradiation of the signal at $\delta 2.15$ led to a simplification of the signals at $\delta 2.15$ and 6.35 ; irradiation of the signal at $\delta 6.35$ led to a simplification of the signals at $\delta 6.12$ and 7.30; irradiation of the signal at $\delta 7.30$ led to a simplification of the signal at $\delta 6.35$) (Found: M^{+}, 308.1334. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{OP}$ requires $M, 308.1331$); $m / z 308\left(37 \%, \mathrm{M}^{+}\right)$, 265 ($47, \mathrm{M}-$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 200 ($100, \mathrm{Ar}_{2} \mathrm{POH}$), 199 ($83, \mathrm{Ar}_{2} \mathrm{PO}$), 183 (60 , $\left.\mathrm{Ar}_{2}\right)$ and $152\left(27, \mathrm{Ar}_{2}\right)$. The second product to be eluted was the alcohol syn- 26 ($38 \mathrm{mg}, 67 \%$), as a gum $R_{\mathrm{F}}(\mathrm{EtOAc}-5 \% \mathrm{MeOH})$ $0.16 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3370 \mathrm{br}(\mathrm{OH}), 3000-2840(\mathrm{CH}), 1660$ $(\mathrm{C}=\mathrm{C}), 1600(\mathrm{Ph})$ and $1155(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.84$ $7.37\left(8 \mathrm{H}, \mathrm{m}\right.$, dibenzo-H), $5.46\left(1 \mathrm{H}\right.$, ddd, $J_{\mathrm{PH}} 3.9, J_{\mathrm{d}} 15.5,6.9$, $\mathrm{PCHCH}=\mathrm{CH}), 5.37$ (1 H, ddd, $J 15.5,4.8,3.7, \mathrm{PCHCH}=\mathrm{CH})$, $3.91(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}), 3.03$ (1 H, d quint, $J_{\mathrm{PH}} 18.2, J_{\mathrm{q}} 6.9, \mathrm{PCH}$), $1.8\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{OH}\right), 1.25\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 17.2\right.$, $\left.J_{\mathrm{HH}} 7.0, \mathrm{PCHMe}\right), 1.41-1.05\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, and 0.83 ($3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{Me}$) (Found: $\mathrm{M}^{+}, 326.1425 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ requires $M, 326.1435$); $m / z 326\left(3 \%\right.$, M $\left.^{+}\right)$, 228 ($100, \mathrm{Ar}_{2} \mathrm{POEt}$), 200 (72, $\mathrm{Ar}_{2} \mathrm{POH}$), 199 (66, $\mathrm{Ar}_{2} \mathrm{PO}$), 183 (20, $\mathrm{Ar}_{2} \mathrm{P}$) and 152 (23, Ar_{2}). Analytical HPLC (eluting with ethyl acetate-5\% methanol) showed that this contained $c a .9 \%$ of the ($2 R S, 5 S R$)adduct anti-26.

Acknowledgement

We thank SERC for grants (to J. C., J. E. and A. B. McE.)

References

1 H.-J. Altenbach in Comprehensive Organic Synthesis, eds. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 6, p. 829.
2 P. S. Brown, N. Greeves, A. B. McElroy and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1991, 1485.
3 Preliminary communication: A. B. McElroy and S. Warren, Tetrahedron Lett., 1985, 26, 1677.

4 J. H. Babler and D. O. Olsen, Tetrahedron Lett., 1974, 351; J. H. Babler, D. O. Olsen and W. H. Arnold, J. Org. Chem., 1974, 39, 1656.
5 E. A. Braude and E. S. Stern, J. Chem. Soc., 1948, 1982.
6 A. H. Davidson, C. Earnshaw, J. I. Grayson and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1977, 1452.
7 E. Egert and O. Kennard, unpublished observations.
8 A. B. McElroy and S. Warren, Tetrahedron Lett., 1985, 26, 2119.
9 H. L. Goering and M. M. Pombo, J. Am. Chem. Soc., 1960, 82, 2515; H. L. Goering, J. T. Doi and K. D. McMichael, J. Am. Chem. Soc., 1964, 86, 1951.
10 J. Clayden, E. W. Collington and S. Warren, Tetrahedron Lett., 1992, 33, 7039, 7043; 1993, 34, 1327; J. Clayden, E. W. Collington, R. B. Lamont and S. Warren, Tetrahedron Lett., 1993, 34, 2203; J. Clayden and S. Warren, J. Chem. Soc., Perkin Trans. I, in the press.
11 A. D. Buss and S. Warren, J. Chem. Soc., Perkin Trans. I, 1985, 2307; A. D. Buss, N. Greeves, R. Mason and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1987, 2569.
12 J. Elliott, D. Hall and S. Warren, Tetrahedron Lett., 1989, 30, 601; D. Hall, A.-F. Sévin and S. Warren, Tetrahedron Lett., 1991, 32, 7123.
13 I. Fleming, H. Kühne and K. Takaki, J. Chem. Soc., Perkin Trans. I, 1986, 725; M. T. Reetz, F. Wang and K. Harms, J. Chem. Soc., Chem. Commun., 1991, 1309.
14 J. Elliott and S. Warren, Tetrahedron Lett., 1986, 27, 645.
15 A. J. Mancuso, S. L. Huang and D. Swern, J. Org. Chem., 1978, 43, 2480.

16 J. L. Luche, L. Rodriguez-Hahn and P. Crabbé, J. Chem. Soc., Chem. Commun., 1978, 601; J. L. Luche, J. Am. Chem. Soc., 1978, 100, 2226; A. L. Gemal and J. L. Luche, J. Am. Chem. Soc., 1981, 103, 5454; S. J. Danishefsky and C. J. Maring, J. Am. Chem. Soc., 1985, 107, 1269.
17 A. B. McElroy and S. Warren, Tetrahedron Lett., 1985, 26, 5709.
18 C. Stuebe, W. M. Le Suer and G. R. Norman, J. Am. Chem. Soc., 1955, 77, 3526.
19 H. M. Walton, J. Org. Chem., 1957, 22, 1161.
20 E. Kitazawa, T. Imamura, K. Saigo and T. Mukaiyama, Chem. Lett., 1975, 569.
21 A. D. Buss, W. B. Cruse, O. Kennard and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1984, 243.
22 G. Höfle, W. Steglich and H. Vorbrüggen, Angew. Chem., Int. Ed. Engl., 1978, 17, 569.
23 H. Pommer and A. Nürrenbach, Pure Appl. Chem., 1975, 43, 527.
24 J. Koskikallio, Acta Chem. Scand., 1964, 18, 2248.
25 E. J. Corey and J. W. Suggs, Tetrahedron Lett., 1975, 2647.
26 J. C. Collins, W. W. Hess and F. J. Frank, Tetrahedron Lett., 1968,
3363; R. Ratcliffe and R. Rodehorst, J. Org. Chem., 1970, 35, 4000.
27 N. S. Ramegowda, M. N. Modi, A. K. Koul, J. M. Bora, C. K. Narang and N. K. Mathur, Tetrahedron, 1973, 29, 3985.
28 B. B. Hunt and B. C. Saunders, J. Chem. Soc., 1957, 2413.
29 J. Cornforth, R. H. Cornforth and R. T. Gray, J. Chem. Soc., Perkin Trans. 1, 1982, 2289.

Paper 3/02188B
Received 16th April 1993
Accepted 30th April 1993

